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Introduction

Fast Gröbner basis algorithms rely on linear algebra (ex: F4,
F5. . . )

→ Not optimal unless ω = 2.

Can we do it with polynomial arithmetic?

→ Hope for
asymptotically optimal algorithms.

Easier problem

Given a Gröbner basis G , can we reduce P modulo G faster?

Main result

If G is sufficiently regular, a quasi-optimal algorithm exists modulo
precomputation.

Joris van der Hoeven and Robin Larrieu Fast reduction of bivariate polynomials



Introduction
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Given a Gröbner basis G , can we reduce P modulo G faster?

Main result

If G is sufficiently regular, a quasi-optimal algorithm exists modulo
precomputation.

Joris van der Hoeven and Robin Larrieu Fast reduction of bivariate polynomials



Introduction
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Polynomial reduction: complexity

Y

X

I := 〈A,B〉: O(n2) coefficients.

K[X ,Y ]/I : dimension O(n2).

G : O(n3) coefficients (O(n2) for each Gi ).

Reduction using G needs at least O(n3) =⇒ reduction with less
information?
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Vanilla Gröbner bases
Polynomial reduction

Definition
Terse representation

Outline

1 Vanilla Gröbner bases
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Definition

We consider the term orders ≺k (k ∈ N∗) as the weighted-degree
lexicographic order with weights (X : 1,Y : k).

Vanilla Gröbner stairs

The monomials below the stairs are the minimal elements with
respect to ≺k

Example for k = 4 and an ideal I of degree D = 237
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Definition (2)

Retractive property

For ` ∈ N∗,

let I

`

:= {0, 1, n}

∪ `N ∩ (0, n)

. The retractive property
means that for any i

, `

6 n we have a linear combination

Gi =
∑
j∈I

`

Ci ,j

,`

Gj

with degk Ci ,j ,` = O(kl)

.

More precisely, degk Ci,j,` < k(2`− 1).

A Gröbner basis for the k-order is vanilla if it is a vanilla Gröbner
stairs and has the retractive property.

Conjecture: vanilla Gröbner bases are generic

Experimentally, for generators chosen at random, and for various
term orders, the Gröbner basis is vanilla.
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Vanilla Gröbner bases
Polynomial reduction

Definition
Terse representation

Definition (2)

Retractive property

For ` ∈ N∗, let I` := {0, 1, n} ∪ `N ∩ (0, n). The retractive property
means that for any i , ` 6 n we have a linear combination

Gi =
∑
j∈I`

Ci ,j ,`Gj with degk Ci ,j ,` = O(kl).

More precisely, degk Ci,j,` < k(2`− 1).
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Vanilla Gröbner bases
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Terse representation

G0, G1, Gn and well-chosen retraction coefficients hold all
information (in space Õ(n2)) and allow to retrieve G fast.

The coefficients of each Gi are needed to compute the reduction,
but there are too many.

=⇒ Keep only enough coefficients to evaluate Qi .
=⇒ Control the degree of the quotients.

Dichotomic selection strategy

n/2 quotients of degree d .

n/4 quotients of degree 2d .

n/8 quotients of degree 4d .

. . .
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information (in space Õ(n2)) and allow to retrieve G fast.

The coefficients of each Gi are needed to compute the reduction,
but there are too many.
=⇒ Keep only enough coefficients to evaluate Qi .
=⇒ Control the degree of the quotients.

Dichotomic selection strategy

n/2 quotients of degree d .

n/4 quotients of degree 2d .

n/8 quotients of degree 4d .

. . .

Joris van der Hoeven and Robin Larrieu Fast reduction of bivariate polynomials



Vanilla Gröbner bases
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Terse representation – Example

G0 G1 G2

+ the linear combination
G2 = f2(Gi , i ∈ {0, 1, 4, 8, 11})
(5 polynomials of degree 27)

G3

+ the linear combination
G3 = f3(Gi , i ∈ {0, 1, 2, 4, 6, 8, 10, 11})

(8 polynomials of degree 11)

G4

+ the linear combination
G4 = f4(Gi , i ∈ {0, 1, 8, 11})
(4 polynomials of degree 59)

G5

+ the linear combination
G5 = f5(Gi , i ∈ {0, 1, 2, 4, 6, 8, 10, 11})

(8 polynomials of degree 11)

G6

+ the linear combination
G6 = f6(Gi , i ∈ {0, 1, 4, 8, 11})
(5 polynomials of degree 27)

G7

+ the linear combination
G7 = f7(Gi , i ∈ {0, 1, 2, 4, 6, 8, 10, 11})

(8 polynomials of degree 11)

G8

+ the linear combination
G8 = f8(Gi , i ∈ {0, 1, 11})

(3 polynomials of degree 123)

G9

+ the linear combination
G9 = f9(Gi , i ∈ {0, 1, 2, 4, 6, 8, 10, 11})

(8 polynomials of degree 11)

G10

+ the linear combination
G10 = f10(Gi , i ∈ {0, 1, 4, 8, 11})
(5 polynomials of degree 27)

G11
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Idea of the algorithm

Theorem (van der Hoeven – ACA 2015)

Using relaxed multiplications, the extended reduction of P modulo
G can be computed in quasi-linear time for the size of the equation

P =
∑
i

QiGi + R.

But this equation has size O(n3) and we would like to achieve
Õ(n2).

Adapt the algorithm to take advantage of the terse representation:

Use the truncated elements G#
i instead (Õ(n2) coefficients).

Then, use the retraction coefficients to compute the
remainder.
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Vanilla Gröbner bases
Polynomial reduction

Idea of the algorithm
Applications

Applications – multiplication in the quotient algebra

Given P,Q ∈ A := K[X ,Y ]/I , compute PQ ∈ A in normal form.
Assume that:

The Gröbner basis G of I for some term order is vanilla.

Its terse representation has been precomputed.

P and Q are given in normal form with respect to G .

Theorem

Multiplication in A can be computed in time Õ(dimA).
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Applications – conversion between representation

P ∈ A[4]

P ∈ A[42]

Perform a Gröbner walk

A[4] ←→ A[8] ←→ A[16] ←→ A[32] ←→ A[42]

(assuming these terse representations have been precomputed).

Theorem

The change of representation can be done in time Õ(dimA).
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Conclusion

Main result

Under regularity assumptions, the extended reduction of P modulo
a Gröbner basis G can be computed in quasi-linear time (with
respect to the size of P and the dimension of the quotient algebra).

Proof-of-concept implementation (in Sage) at
https://www.lix.polytechnique.fr/~larrieu/

Mainly intended as correctness proof.

Missing (fast) implementation of some primitives =⇒ does
not achieve quasi-optimal complexity.

For the same reason (+ very expensive precomputation), it is
not competitive in practice.
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Future work

Generalization:

More general term orders ?

→ start with ≺k , k ∈ Q.

Slightly degenerate cases ?

→ seems feasible.

More than 2 variables ?

→ seems feasible but very technical.

Helpful for Gröbner basis computation?

In a very specific setting, yes → see my poster.

In general, no idea (but maybe you have some).

Thank you for your attention
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