Fast Reduction of Bivariate Polynomials with Respect to Sufficiently Regular Gröbner Bases

Joris van der Hoeven, Robin Larrieu

Laboratoire d'Informatique de l'Ecole Polytechnique (LIX)

ISSAC '18 - New York, USA 18 / 07 / 2018

Introduction

- Fast Gröbner basis algorithms rely on linear algebra (ex: F4, F5...)
- Can we do it with polynomial arithmetic?

Introduction

- Fast Gröbner basis algorithms rely on linear algebra (ex: F4, F5...) \rightarrow Not optimal unless $\omega = 2$.
- ullet Can we do it with polynomial arithmetic? o Hope for asymptotically optimal algorithms.

Introduction

- Fast Gröbner basis algorithms rely on linear algebra (ex: F4, F5...) \rightarrow Not optimal unless $\omega = 2$.
- \bullet Can we do it with polynomial arithmetic? \to Hope for asymptotically optimal algorithms.

Easier problem

Given a Gröbner basis G, can we reduce P modulo G faster?

Main result

If G is sufficiently regular, a quasi-optimal algorithm exists modulo precomputation.

Polynomial reduction: complexity

- $I := \langle A, B \rangle$: $O(n^2)$ coefficients.
- $\mathbb{K}[X,Y]/I$: dimension $O(n^2)$.
- $G: O(n^3)$ coefficients $(O(n^2)$ for each $G_i)$.

Reduction using G needs at least $O(n^3) \implies$ reduction with less information?

Outline

- Vanilla Gröbner bases
 - Definition
 - Terse representation

- 2 Polynomial reduction
 - Idea of the algorithm
 - Applications

Outline

- Vanilla Gröbner bases
 - Definition
 - Terse representation
- 2 Polynomial reduction

Definition

We consider the term orders $\prec_k (k \in \mathbb{N}^*)$ as the weighted-degree lexicographic order with weights (X:1,Y:k).

Vanilla Gröbner stairs

The monomials below the stairs are the minimal elements with respect to \prec_k

Example for k = 4 and an ideal I of degree D = 237

Retractive property

 $\text{let } I := \{0,1,n\} \qquad \qquad \text{. The retractive property}$ means that for any $i \leqslant n$ we have a linear combination

$$G_i = \sum_{j \in I} C_{i,j} G_j$$

Retractive property

For $\ell \in \mathbb{N}^*$, let $I_{\ell} := \{0, 1, n\} \cup \ell \mathbb{N} \cap (0, n)$. The retractive property means that for any $i, \ell \leq n$ we have a linear combination

$$G_i = \sum_{j \in I_\ell} C_{i,j,\ell} G_j$$
 with $\deg_k C_{i,j,\ell} = O(kI)$.

Retractive property

For $\ell \in \mathbb{N}^*$, let $I_{\ell} := \{0, 1, n\} \cup \ell \mathbb{N} \cap (0, n)$. The retractive property means that for any $i, \ell \leq n$ we have a linear combination

$$G_i = \sum_{j \in I_\ell} C_{i,j,\ell} G_j$$
 with $\deg_k C_{i,j,\ell} = O(kI)$.

More precisely, $\deg_k C_{i,j,\ell} < k(2\ell - 1)$.

Retractive property

For $\ell \in \mathbb{N}^*$, let $I_{\ell} := \{0, 1, n\} \cup \ell \mathbb{N} \cap (0, n)$. The retractive property means that for any $i, \ell \leq n$ we have a linear combination

$$G_i = \sum_{j \in I_\ell} C_{i,j,\ell} G_j$$
 with $\deg_k C_{i,j,\ell} = O(kI)$.

More precisely, $\deg_k C_{i,j,\ell} < k(2\ell - 1)$.

A Gröbner basis for the *k*-order is vanilla if it is a vanilla Gröbner stairs and has the retractive property.

Conjecture: vanilla Gröbner bases are generic

Experimentally, for generators chosen at random, and for various term orders, the Gröbner basis is vanilla.

Terse representation

 G_0 , G_1 , G_n and well-chosen retraction coefficients hold all information (in space $\tilde{O}(n^2)$) and allow to retrieve G fast.

The coefficients of each G_i are needed to compute the reduction, but there are too many.

Terse representation

 G_0 , G_1 , G_n and well-chosen retraction coefficients hold all information (in space $\tilde{O}(n^2)$) and allow to retrieve G fast.

The coefficients of each G_i are needed to compute the reduction, but there are too many.

 \implies Keep only enough coefficients to evaluate Q_i .

Terse representation

 G_0 , G_1 , G_n and well-chosen retraction coefficients hold all information (in space $\tilde{O}(n^2)$) and allow to retrieve G fast.

The coefficients of each G_i are needed to compute the reduction, but there are too many.

- \implies Keep only enough coefficients to evaluate Q_i .
- ⇒ Control the degree of the quotients.

Dichotomic selection strategy

- n/2 quotients of degree d.
- n/4 quotients of degree 2d.
- n/8 quotients of degree 4d.
- ...

Terse representation – Example

Terse representation – Example

Outline

- Vanilla Gröbner bases
- Polynomial reduction
 - Idea of the algorithm
 - Applications

Idea of the algorithm

Theorem (van der Hoeven – ACA 2015)

Using relaxed multiplications, the extended reduction of P modulo G can be computed in quasi-linear time for the size of the equation

$$P = \sum_{i} Q_{i}G_{i} + R.$$

But this equation has size $O(n^3)$ and we would like to achieve $\tilde{O}(n^2)$.

Idea of the algorithm

Theorem (van der Hoeven – ACA 2015)

Using relaxed multiplications, the extended reduction of P modulo G can be computed in quasi-linear time for the size of the equation

$$P = \sum_{i} Q_{i}G_{i} + R.$$

But this equation has size $O(n^3)$ and we would like to achieve $\tilde{O}(n^2)$.

Adapt the algorithm to take advantage of the terse representation:

- Use the truncated elements $G_i^{\#}$ instead $(\tilde{O}(n^2)$ coefficients).
- Then, use the retraction coefficients to compute the remainder.

Applications – multiplication in the quotient algebra

Given $P, Q \in \mathbb{A} := \mathbb{K}[X, Y]/I$, compute $PQ \in \mathbb{A}$ in normal form. Assume that:

- The Gröbner basis G of I for some term order is vanilla.
- Its terse representation has been precomputed.
- ullet P and Q are given in normal form with respect to G.

$\mathsf{Theorem}$

Multiplication in \mathbb{A} can be computed in time $\tilde{O}(\dim \mathbb{A})$.

Applications – conversion between representation

Perform a Gröbner walk

$$\mathbb{A}^{[4]} \longleftrightarrow \mathbb{A}^{[8]} \longleftrightarrow \mathbb{A}^{[16]} \longleftrightarrow \mathbb{A}^{[32]} \longleftrightarrow \mathbb{A}^{[42]}$$

(assuming these terse representations have been precomputed).

$\mathsf{Theorem}$

The change of representation can be done in time $\tilde{O}(\dim \mathbb{A})$.

Conclusion

Main result

Under regularity assumptions, the extended reduction of P modulo a Gröbner basis G can be computed in quasi-linear time (with respect to the size of P and the dimension of the quotient algebra).

Proof-of-concept implementation (in Sage) at https://www.lix.polytechnique.fr/~larrieu/

- Mainly intended as correctness proof.
- For the same reason (+ very expensive precomputation), it is not competitive in practice.

Generalization:

- More general term orders ?
- Slightly degenerate cases ?
- More than 2 variables ?

Generalization:

- More general term orders ? \rightarrow start with \prec_k , $k \in \mathbb{Q}$.
- Slightly degenerate cases ? \rightarrow seems feasible.
- More than 2 variables ? \rightarrow seems feasible but very technical.

Generalization:

- More general term orders ? \rightarrow start with \prec_k , $k \in \mathbb{Q}$.
- Slightly degenerate cases ? \rightarrow seems feasible.
- ullet More than 2 variables ? o seems feasible but very technical.

Helpful for Gröbner basis computation?

- ullet In a very specific setting, yes o see my poster.
- In general, no idea (but maybe you have some).

Generalization:

- More general term orders ? \rightarrow start with \prec_k , $k \in \mathbb{Q}$.
- Slightly degenerate cases ? \rightarrow seems feasible.
- ullet More than 2 variables ? o seems feasible but very technical.

Helpful for Gröbner basis computation?

- In a very specific setting, yes \rightarrow see my poster.
- In general, no idea (but maybe you have some).

Thank you for your attention