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Abstract

We establish a connection between the hypergeometric solutions of a first order linear recurrence
systems and the determinant of the system matrix. This enables us to find hypergeometric solutions
for systems in a way similar to the scalar case. Our result works in the in the single basic and in the
multibasic case.

1 Introduction

We consider a difference field (K(x1, . . . , xn), σ) where K is a field of characteristic 0, σ : K → K is an
automorphism of K and where we extend σ to the rational function field in the n variables x1, . . . , xn by
letting σ(xj) = αjxj + βj with αj , βj ∈ K, αj 6= 0 and (αj , βj) 6= (1, 0) for j = 1, . . . , n. If n ≥ 2, we will
refer to this setting as the multibasic case; else, if n = 1, we are in the single basic case.

Let L ⊇ K(x1, . . . , xn) be a difference field extension. We say that γ ∈ L is hypergeometric over
K(x1, . . . , xn) if σ(γ) = hγ for some h ∈ K(x1, . . . , xn)∗. A column vector y ∈ Ls is called hypergeometric
if every component is either hypergeometric or zero.

We are looking for non-zero hypergeometric solutions y of the first order linear recurrence system

σ(y) = Ay where A ∈ K(x1, . . . , xn)s×s, det(A) 6= 0 (sys)

and where the application of σ to the vector y is componentwise. A traditional approach for solving these
systems is uncoupling [8, 4, 11, 7]; this yields a single higher order scalar equation whose hypergeometric
solutions correspond to the hypergeometric solutions of the system. In fact, translating the solutions of
the scalar equation back to the system will result in hypergeometric solutions of the shape y = γq where
the scalar γ ∈ L is hypergeometric and q ∈ K(x1, . . . , xn)s is a non-zero vector. Thus, it is sufficient to
restrict ourselves to solutions of this form.

Our main result is the following theorem.

Theorem 1 Let d ∈ K[x1, . . . , xn] \ {0} be such that dA ∈ K[x1, . . . , xn]s×s contains only polynomials. A
non-zero vector y = γq is a hypergeometric solutions of (sys) if and only if there exists λ ∈ K[x1, . . . , xn]
with

1. λ | det(dA),

2. σ(γ) = (λ/d)γ and

3. q ∈ K[x1, . . . , xn]s is a polynomial vector with λσ(q) = (dA)q.
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The theorem immediately suggests an algorithm to find hypergeometric solutions: For each divisor
λ | det(dA) try to find the polynomial solutions q for the modified system λσ(q) = (dA)q. Each such
pair (λ, q) gives rise to a hypergeometric solution of the original system. Note that this is similar to
the algorithm hyper for scalar equations [10] in that we reduce the problem of finding hypergeometric
solutions of a system to that of finding polynomial solutions of several related systems.

The main difference between hyper and the system case considered here is that we do not yet have
a good way to determine the possible leading coefficients of λ in the theorem. This means that we have
to iterate over infinitely many divisors or introduce a new variable c for the leading coefficient to be
determined alongside q. According to [5], this c can be found by an unpublished methods of theirs if
K is constant w. r. t. σ, i. e., if σ|K = id. Alternatively, we can set a degree bound for q and make an
ansatz with unknown c. If K is constant field, then the ansatz this leads to an equation Mv = 0 where M
contains linear polynomials in K[c]. This allows us find all solutions up to the given degree bound. The
latter approach seems to work well in practise and we have implemented it as a Mathematica package.
Our implementation can easily deal with small systems, but it gets slow for larger systems or systems with
many variables since the current code relies on the Smith normal form to determine for which c the system
Mv = 0 is solvable.

2 Conclusion

We have shown how for first order linear recurrence systems (sys) in the multibasic case K(x1, . . . , xn)
where we have multiple indeterminates there is a connection between the hypergeometric solutions and the
divisors of the system matrix A. This connection can be exploited to yield an algorithm for computing all
hypergeometric solutions in a way similar to existing algorithms for scalar equations. We have implemented
the algorithm in Mathematica.

In the case of a single variable K(x), hypergeometric solutions can be found by uncoupling the system
using, e. g., one of [8, 4, 11, 7] and computing hypergeometric solutions of the resulting higher order scalar
equations using, e. g., [10, 9, 1, 6]. Recently, an alternative algorithm was given in [2, 3] where the authors
provide a way of deriving scalar equations from a system which is cheaper than the traditional uncoupling
method.

The appealing new feature of the approach presented in this contribution is on the one hand its
simplicity and on the other hand and perhaps more importantly the fact that it works with arbitrarily
many variables x1, . . . , xn.
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[6] A. Bauer and M. Petkovšek, Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symbolic
Comput. 28 (1999), no. 4–5, 711–736.
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