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Notation

Throughout this talk we consider:

K : a computable field

K [[x ]]: ring of formal power series over K .

Given a field F :

VF (f ) = 〈f , f ′, f ′′, ...〉F .
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D-finite functions

Definition
Let f ∈ K [[x ]]. We say that f is D-finite (or holonomic) if there
exist d ∈ N and polynomials p0(x), ..., pd (x) such that:

pd (x)f (d)(x) + ...+ p0(x)f (x) = 0.

We say that d is the order of f .
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Non-D-finite examples

There are power series that are not D-finite:

Double exponential: f (x) = eex .
Tangent: tan(x) = sin(x)

cos(x) .

Gamma function: f (x) = Γ(x + 1).
Partition Generating Function: f (x) =

∑
n≥0 p(n)xn.
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DD-finite Functions

Definition
Let f ∈ K [[x ]]. We say that f is D-finite if there exist d ∈ N and
polynomials p0(x), ..., pd (x) such that:

pd (x)f (d)(x) + ...+ p0(x)f (x) = 0.
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DD-finite Functions

Definition
Let f ∈ K [[x ]]. We say that f is DD-finite if there exist d ∈ N and
D-finite elements r0(x), ..., rd (x) such that:

rd (x)f (d)(x) + ...+ r0(x)f (x) = 0.
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Examples

The set is bigger than the D-finite functions:

f is D-finite ⇒ f is DD-finite,
f (x) = eex ⇒ f ′(x)− ex f (x) = 0,

f (x) = tan(x) ⇒ cos(x)2f ′′(x)− 2f (x) = 0,
f (x) = e

∫ x
0 Jn(t)dt ⇒ f ′(x)− Jn(x)f (x) = 0

Algorithmic Arithmetics with DD-Finite Functions



D-finite functions DD-finite functions Implementation Conclusions

Differentially Definable Functions

Definition
Let f ∈ K [[x ]]. We say that f is DD-finite if there exist d ∈ N and
D-finite elements r0(x), ..., rd (x) such that:

rd (x)f (d)(x) + ...+ r0(x)f (x) = 0.
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Differentially Definable Functions

Definition
Let f ∈ K [[x ]] and R ⊂ K [[x ]] a ring. We say that f is
differentially definable over R if there exist d ∈ N and elements in
R r0(x), ..., rd (x) such that:

rd (x)f (d)(x) + ...+ r0(x)f (x) = 0.

D(R): differentially definable functions over R.

Algorithmic Arithmetics with DD-Finite Functions



D-finite functions DD-finite functions Implementation Conclusions

Characterization Theorem

The following are equivalent:

f (x) ∈ D(R).

There are elements r0(x), ..., rd (x) ∈ R and g(x) ∈ D(R) such:

rd (x)f (d)(x) + ...+ r0(x)f (x) = g(x).

Let F be the field of fractions of R:

dim(VF (f )) <∞
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Closure properties

f (x), g(x) ∈ D(R) of order d1, d2.
F the field of fractions of R.
a(x) algebraic over F of degree p.

Property Is in D(R) Order bound
Addition (f + g) d1 + d2
Product (fg) d1d2

Differentiation f ′ d1
Integration

∫
f d1 + 1

Be Algebraic a(x) p
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Closure properties

f (x), g(x) ∈ D(R) of order d1, d2.
F the field of fractions of R.
a(x) algebraic over F of degree p.

Property Is in D(R) Order bound
Addition (f + g) d1 + d2
Product (fg) d1d2

Differentiation f ′ d1
Integration

∫
f d1 + 1

Be Algebraic a(x) p

−→ Proof by direct formula
−→ Proof by linear algebra
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Vector spaces

Let R ⊂ K [[x ]], F its field of fractions and VF (f ) the F -vector
space spanned by f and its derivatives.

The Characterization theorem provides

f (x) ∈ D(R) ⇔ dim(VF (f )) <∞
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The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0
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The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0

Method
1 Compute W ⊂ K [[x ]] such that dim(W ) <∞ and

VF (h) ⊂W .

2 Compute generators Φ = {φ1, ..., φn} of W .
3 For i = 0, ..., n, compute vectors vi ∈ F n such that:

h(i)(x) =
∑n

j=0 vijφj .
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The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0

Method
4 Set up the ansatz:

α0h(x) + ...+ αnh(n) = 0.

5 Solve the induced F -linear system for the variables αk .
6 Return A = αn∂

n + ...+ α1∂ + α0.
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Derivation matrices

Let V be an F -vector space with derivation ∂ and Φ be n
generators of V .

Derivation matrix
M ∈ F n×n is a derivation matrix w.r.t Φ if

∂

α1
...
αn

 = M

α1
...
αn

 +

α
′
1
...
α′n



Example: a derivation matrix in VF (f ) is the companion matrix Cf .
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Addition

Let f , g ∈ D(R) of orders d1 and d2 respectively. Consider
h = f + g
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Addition

Let f , g ∈ D(R) of orders d1 and d2 respectively. Consider
h = f + g

Computing the space W+ and the generators Φ+

The proof of the closure property addition shows:

W+ = V (f )⊕ V (g),

hence the generators of W+ are the union of the generators of
V (f ) and V (g):

Φ+ = {f , f ′, ..., f (d1−1),

g , g ′, ..., g (d2−1)}
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Addition

Let f , g ∈ D(R) of orders d1 and d2 respectively. Consider
h = f + g

Computing the derivation matrix M+ w.r.t Φ+

M+ = Cf ⊕ Cg .

Computing the initial vector v0 w.r.t Φ+

As we have h = f + g , the initial vector is:

v0 = ed1,1 ⊕ ed2,1,
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Product

Let f , g ∈ D(R) of orders d1 and d2 respectively. Consider h = fg
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Product

Let f , g ∈ D(R) of orders d1 and d2 respectively. Consider h = fg

Computing the space W∗ and the generators Φ∗
The proof of the closure property product shows:

W = V (f )⊗ V (g).

Hence the generators of W∗ are the tensor product of the
generators of V (f ) and V (g):

Φ = { fg , f ′g , ..., f (d1−1)g ,
fg ′, f ′g ′, ..., f (d1−1)g ′,
...,

..., . . . ,
...,

fg (d2−1), f ′g (d2−1), ..., f (d1−1)g (d2−1)}
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Product

Let f , g ∈ D(R) of orders d1 and d2 respectively. Consider h = fg

Computing the derivation matrix M∗ w.r.t Φ∗

M∗ = Cf ⊗ Id2 + Id1 ⊗ Cg .

Computing the initial vector v0 w.r.t Φ∗
As we have h = fg , the initial vector is:

v0 = ed1,1 ⊗ ed2,1 = (1, 0, 0, 0...),
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Coefficient growth

In the case R = D(K [x ]), computing closure properties means
computing D-finite closure properties on the coefficient level.

Each sum possibly increases the order of the equation.
Each product possibly increases the order of the equation.
Each derivative possibly increases the order of the equation.

In practice: huge coefficient growth
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Lazy computations

Solution: skip computations until the end.
1 The coefficients of the original equations are converted to new

variables.

2 Each derivative (requires closure properties) is transformed
into new variables.

3 While solving the linear systems, some pivots need to be
chosen.

A zero checking (applying closure properties) for choosing
pivot.
Each zero found is an algebraic relation: simplify the system.

In the end, apply closure properties

Algorithmic Arithmetics with DD-Finite Functions
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Conclusions

Achievements
Extended the framework of D-finite to a wider class of
computable functions
Implemented closure properties for DD-finite
Code available for SAGE
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Conclusions

Future work
Improve performance of the current code
Study analytic properties of DD-finite functions
Study combinatorial properties of DD-finite functions
Study the analogue of DD-finite functions in sequences
Generalize to other types of operators (q-holonomic).
Multivariate case
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Thank you!

Contact webpage:

https://www.dk-compmath.jku.at/people/antonio

https://www.risc.jku.at/home/ajpastor

SAGE code:

http://git.risc.jku.at/gitweb/?p=ajpastor/diff_
defined_functions.git
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