Bivariate Dimension Polynomials of Non-Reflexive Prime Difference-Differential Ideals. The Case of One Translation

Alexander Levin

The Catholic University of America
Washington, D.C. 20064

43rd International Symposium on Symbolic and Algebraic Computation

New York, July 18, 2018
Let K be a difference-differential field, $\text{Char } K = 0$, with basic set of derivations $\Delta = \{\delta_1, \ldots, \delta_m\}$ and a single endomorphism σ (any two mappings of the set $\Delta \cup \{\sigma\}$ commute). We will often use prefix $\Delta-\sigma$- instead of "difference-differential".

Let T be the free commutative semigroup generated by the set $\Delta \cup \{\sigma\}$.

If $\tau = \delta_1^{k_1} \ldots \delta_m^{k_m} \sigma^l \in T \quad (k_1, \ldots, k_m, l \in \mathbb{N})$, then the numbers $\text{ord}_\Delta \tau = \sum_{i=1}^{m} k_i$ and $\text{ord}_\sigma \tau = l$ are called the orders of τ with respect to Δ and σ, respectively.

If $r, s \in \mathbb{N}$, we set $T(r, s) = \{\tau \in T \mid \text{ord}_\Delta \tau \leq r, \text{ord}_\sigma \tau \leq s\}$.

Furthermore, Θ will denote the subsemigroup of T generated by Δ, so every element $\tau \in T$ can be written as $\tau = \theta \sigma^l$ where $\theta \in \Theta$, $l \in \mathbb{N}$. If $r \in \mathbb{N}$, we set $\Theta(r) = \{\theta \in \Theta \mid \text{ord}_\Delta \theta \leq r\}$.
Theorem 1 (L., 2000)

With the above notation, let \(L = K\langle \eta_1, \ldots, \eta_n \rangle \) be a \(\Delta-\sigma \)-field extension of \(K \) generated by a finite set \(\eta = \{ \eta_1, \ldots, \eta_n \} \). (As a field, \(L = K(\{ \tau \eta_j | \tau \in T, 1 \leq j \leq n \}) \).) Then there exists a polynomial \(\phi_{\eta|K}(t_1, t_2) \in \mathbb{Q}[t_1, t_2] \) such that

(i) \(\phi_{\eta|K}(r, s) = \text{tr. deg}_K K(\{ \tau \eta_j | \tau \in T(r, s), 1 \leq j \leq n \}) \) for all sufficiently large \((r, s) \in \mathbb{N}^2 \). (It means that there exist \(r_0, s_0 \in \mathbb{N} \) such that the equality holds for all \((r, s) \in \mathbb{N}^2 \) with \(r \geq r_0, s \geq s_0 \).)

(ii) \(\text{deg}_{t_1} \phi_{\eta|K} \leq m, \text{deg}_{t_2} \phi_{\eta|K} \leq 1 \) and \(\phi_{\eta|K} \) can be written as

\[
\phi_{\eta|K}(t_1, t_2) = \left(\sum_{i=0}^{m} a_i \binom{t_1 + i}{i} \right) t_2 + \sum_{i=0}^{m} b_i \binom{t_1 + i}{i}
\]

where \(a_i, b_i \in \mathbb{Z} \) (1 \(\leq i \leq m \)).
(iii) If $\phi_{\eta|K}(t_1, t_2) = \left(\sum_{i=0}^{m} a_i \binom{t_1 + i}{i} \right) t_2 + \sum_{i=0}^{m} b_i \binom{t_1 + i}{i}$ and

$$
\phi^{(1)}(t_1) = \sum_{i=0}^{m} a_i \binom{t_1 + i}{i}, \quad \phi^{(2)}(t_1) = \sum_{i=0}^{m} b_i \binom{t_1 + i}{i},
$$

then $a_m, \deg_{t_1} \phi_{\eta|K}, \deg_{t_2} \phi_{\eta|K}$ (which is 0 or 1), $d = \deg \phi^{(1)}$, a_d (if $\phi^{(1)} = 0$, we set $\deg \phi^{(1)} = -1, a_d = 0$), and the coefficient of the monomial with the highest degree in t_1 do not depend on the choice of the system of Δ-σ-generators η of L/K.

Furthermore, a_m is equal to the Δ-σ-transcendence degree of L/K (denoted by Δ-σ-tr. $\deg_K L$), that is, to the maximal number of elements $\xi_1, \ldots, \xi_k \in L$ such that the set

$$\{ \tau \xi_i \mid \tau \in T, 1 \leq i \leq k \}$$

is algebraically independent over K.

$\phi_{\eta|K}(t_1, t_2)$ is called the Δ-σ-dimension polynomial of the extension L/K associated with the set of Δ-σ-generators η.
Let $R = K\{y_1, \ldots, y_n\}$ be the ring of Δ-σ-polynomials in n Δ-σ-indeterminates over K.

As a ring, $R = K[\{\tau y_i \mid \tau \in T, 1 \leq i \leq n\}]$. The Δ-σ-structure on R is obtained by the extension of the action of elements of T on K by setting $\tau'(\tau y_i) = (\tau' \tau)y_i$ for any $\tau, \tau' \in T, 1 \leq i \leq n$.

Elements of the set $TY = \{\tau y_i \mid \tau \in T, 1 \leq i \leq n\}$ are called terms.

By a Δ-σ-ideal of R we mean an ideal P of this ring such that $\delta_i(P) \subseteq P$ ($1 \leq i \leq m$) and $\sigma(P) \subseteq P$. P is said to be a prime Δ-σ-ideal if it is prime in the usual sense.

A Δ-σ-ideal P is said to be reflexive if the inclusion $\sigma(a) \in P$ ($a \in R$) implies that $a \in P$. In this case the factor ring R/P has the natural structure of a Δ-σ-ring: $\tau(a + P) = \tau(a) + P$ for every $a \in R$, $\tau \in T$.
If P is a prime reflexive Δ-σ-ideal in the ring of Δ-σ-polynomials $R = K\{y_1, \ldots, y_n\}$, then the quotient field $L = q.f.(R/P)$ has a natural structure of a Δ-σ-field extension of K: $L = K\langle \eta_1, \ldots, \eta_n \rangle$ where η_i is the canonical image of y_i in R/P ($1 \leq i \leq n$). Then the Δ-σ-dimension polynomial of the extension L/K is called the Δ-σ-dimension polynomial of P.

If $f \in R$, then $f(\eta)$ will denote the image of f under the natural homomorphism $R \rightarrow L$ ($\eta_i \mapsto y_i + P$ for $i = 1, \ldots, n$).

If $F \subset R$, we set $F(\eta) = \{f(\eta) \mid f \in F\}$.

If P is a non-reflexive Δ-σ-ideal of R, then

$$P^* = \{f \in R \mid \sigma^k(f) \in P \text{ for some } k \in \mathbb{N}\}$$

is the smallest reflexive Δ-σ-ideal of R containing P. It is called the reflexive closure of P. If P is prime, so is P^*.
The original proof of Theorem 1 was based on the properties of dimension polynomials of Δ-σ-modules and modules of Kähler differentials associated with a field extension. The following generalization of the Ritt-Kolchin characteristic set method gives another proof of Theorem 1 and a method of computation of Δ-σ-dimension polynomials.

We consider two orderings $<_{\Delta}$ and $<_{\sigma}$ on T and on the set of terms TY of $K\{y_1, \ldots, y_n\}$ such that if $\tau = \delta_1^{k_1} \ldots \delta_m^{k_m} \sigma^l$, $\tau' = \delta_1^{k'_1} \ldots \delta_m^{k'_m} \sigma'^l \in T$, then

$\tau <_{\Delta} \tau'$ iff $(\text{ord}_{\Delta} \tau, k_1, \ldots, k_m, l) <_P (\text{ord}_{\Delta} \tau', k'_1, \ldots, k'_m, l')$ and

$\tau <_{\sigma} \tau'$ iff $(l, \text{ord}_{\Delta} \tau, k_1, \ldots, k_m) <_P (l, \text{ord}_{\Delta} \tau', k'_1, \ldots, k'_m)$.

Furthermore, $\tau y_i <_{\Delta} (<_\sigma) \tau' y_j$ iff $\tau <_{\Delta} (<_\sigma) \tau'$ or $\tau = \tau'$, $i < j$.

($<_P$ denotes the product order on the set \mathbb{N}^{m+2}: $a = (a_1, \ldots, a_{m+2}) <_P a' = (a'_1, \ldots, a'_{m+2})$ iff $a_i \leq a'_i$ for $i = 1, \ldots, m+2$; $a <_P a'$ iff $a <_P a'$ and $a \neq a'$.)
If \(u = \tau y_k \in TY \), we set \(\text{ord}_\Delta u = \text{ord}_\Delta \tau \) and \(\text{ord}_\sigma u = \text{ord}_\sigma \tau \).

A term \(\tau' y_i \) is said to be a **transform** of a term \(\tau y_j \) if \(i = j \) and \(\tau \mid \tau' \) (that is, \(\tau' = \tau \tau'' \) for some \(\tau'' \in T \)).

If \(A \in K\{y_1, \ldots, y_n\} \setminus K \), then the highest terms of \(A \) with respect to \(<_\Delta \) and \(<_\sigma \) are called the **\(\Delta\)**-leader and **\(\sigma\)**-leader of \(A \), respectively. They are denoted, respectively, by \(u_A \) and \(v_A \).

If \(A \) is written as a polynomial in \(v_A \),

\[
A = l_d v_A^d + l_{d-1} v_A^{d-1} + \cdots + l_0
\]

\((l_d, l_{d-1}, \ldots, l_0 \text{ do not contain } v_A)\), then \(l_d \) is called the **initial** of \(A \); it is denoted by \(l_A \).

\[
\frac{\partial A}{\partial v_A} = dl_d v_A^{d-1} + (d - 1)l_{d-1} v_A^{d-2} + \cdots + l_1
\]

is called a **separant** of \(A \); it is denoted by \(S_A \).
If \(A, B \in K\{y_1, \ldots, y_n\} \), we say that \(A \) has lower rank than \(B \) and write \(\text{rk} \ A < \text{rk} \ B \) if either \(A \in K \), \(B \notin K \), or
\[
(v_A, \deg_{v_A} A, \text{ord}_\Delta u_A) <_{\text{lex}} (v_B, \deg_{v_B} B, \text{ord}_\Delta u_B)
\]
where \(v_A \) and \(v_B \) are compared with respect to \(<_\sigma \). If the two vectors are equal (or \(A, B \in K \)), we say that \(A \) and \(B \) are of the same rank and write \(\text{rk} \ A = \text{rk} \ B \).

If \(A, B \in K\{y_1, \ldots, y_n\} \), then \(B \) is said to be reduced with respect to \(A \) if
(i) \(B \) does not contain terms \(\tau v_A \) such that \(\text{ord}_\Delta \tau > 0 \) and \(\text{ord}_\Delta (\tau u_A) \leq \text{ord}_\Delta u_B \).
(ii) If \(B \) contains a term \(\tau v_A \) where \(\text{ord}_\Delta \tau = 0 \), then either \(\text{ord}_\Delta u_B < \text{ord}_\Delta u_A \) or \(\text{ord}_\Delta u_A \leq \text{ord}_\Delta u_B \) and \(\deg_{\tau v_A} B < \deg_{v_A} A \).
If $B \in K\{y_1, \ldots, y_n\}$, then B is said to be reduced with respect to a set $A \subseteq K\{y_1, \ldots, y_n\}$ if B is reduced with respect to every element of A.

A set of Δ-σ-polynomials A in $K\{y_1, \ldots, y_n\}$ is called **autoreduced** if $A \cap K = \emptyset$ and every element of A is reduced with respect to any other element of this set.

Proposition 1

Every autoreduced set of Δ-σ-polynomials in the ring $K\{y_1, \ldots, y_n\}$ is finite.

In what follows we always list elements of an autoreduced set in the order of increasing rank.
Proposition 2

Let $A = \{A_1, \ldots, A_d\}$ be an autoreduced set in $K\{y_1, \ldots, y_s\}$ and let I_k and S_k denote the initial and separant of A_k, respectively. Let

$$I(A) = \{X \in K\{y_1, \ldots, y_n\} \mid X = 1 \text{ or } X \text{ is a product of finitely many elements of the form } \sigma^i(I_k) \text{ and } \sigma^j(S_k) \text{ where } i, j \in \mathbb{N}\}.$$

Then for any Δ-polynomial B, there exist $B_0 \in K\{y_1, \ldots, y_n\}$ and $J \in I(A)$ such that B_0 is reduced with respect to A and $JB \equiv B_0 \mod [A]$ (that is, $JB - B_0 \in [A]$).

The Δ-polynomial B_0 is called the remainder of B with respect to A. We also say that B reduces to B_0 modulo A.
If $\mathcal{A} = \{A_1, \ldots, A_p\}$, $\mathcal{B} = \{B_1, \ldots, B_q\}$ are two autoreduced sets, we say that \mathcal{A} has lower rank than \mathcal{B} if one of the following two cases holds:

1. There exists $k \in \mathbb{N}$ such that $k \leq \min\{p, q\}$, $\text{rk} A_i = \text{rk} B_i$ for $i = 1, \ldots, k - 1$ and $\text{rk} A_k < \text{rk} B_k$.
2. $p > q$ and $\text{rk} A_i = \text{rk} B_i$ for $i = 1, \ldots, q$.

If $p = q$ and $\text{rk} A_i = \text{rk} B_i$ for $i = 1, \ldots, p$, then $\text{rk} \mathcal{A} = \text{rk} \mathcal{B}$.

Proposition 3

In every nonempty family of autoreduced sets of Δ-\(\sigma\)-polynomials there exists an autoreduced set of lowest rank. In particular, every ideal I of $K\{y_1, \ldots, y_s\}$ contains an autoreduced set of lowest rank called a **characteristic** set of I. If \mathcal{A} is a characteristic set of a Δ-\(\sigma\)$-ideal I, then an element $B \in I$ is reduced with respect to \mathcal{A} if and only if $B = 0$.
Now we need some results about dimension polynomials of subsets of \mathbb{N}^{m+1} (m is a positive integer) treated as a Cartesian product $\mathbb{N}^m \times \mathbb{N}$ (we single out the last coordinate).

If $a = (a_1, \ldots, a_{m+1}) \in \mathbb{N}^{m+1}$, we set $\text{ord}_1 a = \sum_{i=1}^{m} a_i$ and $\text{ord}_2 a = a_{m+1}$. Furthermore, we treat \mathbb{N}^{m+1} as a partially ordered set with respect to the product order \leq_P.

If $A \subseteq \mathbb{N}^{m+1}$, then V_A will denote the set of all elements $v \in \mathbb{N}^{m+1}$ such that there is no $a \in A$ with $a \leq_P v$. Thus, $v = (v_1, \ldots, v_{m+1}) \in V_A$ if and only if for any element $(a_1, \ldots, a_{m+1}) \in A$, there exists $i \in \mathbb{N}$, $1 \leq i \leq m + 1$, such that $a_i > v_i$.

Furthermore, for any $r, s \in \mathbb{N}$, we set

$$A(r, s) = \{x = (x_1, \ldots, x_{m+1}) \in A \mid \text{ord}_1 x \leq r, \text{ord}_2 x \leq s\}.$$
Theorem 2

Let \(A \subseteq \mathbb{N}^{m+1} \). Then there exists a polynomial
\(\omega_A(t_1, t_2) \in \mathbb{Q}[t_1, t_2] \) such that

(i) \(\omega_A(r, s) = \text{Card } V_A(r, s) \) for all sufficiently large \((r, s) \in \mathbb{N}^2\).

(ii) \(\deg_{t_1} \omega_A \leq m \) and \(\deg_{t_2} \omega_A \leq 1 \) (hence \(\deg \omega_A \leq m + 1 \)).

(iii) \(\deg \omega_A = m + 1 \) if and only if \(A = \emptyset \). In this case
\(\omega_A(t_1, t_2) = (t_1 + m)(t_2 + 1). \)

(iv) \(\omega_A = 0 \) if and only if \((0, \ldots, 0) \in A. \)

\(\omega_A(t_1, t_2) \) is called the dimension polynomial of the set \(A \subseteq \mathbb{N}^{m+1} \) associated with the orders \(\text{ord}_1 \) and \(\text{ord}_2 \).

The proof of the theorem and a closed-form formula for
\(\omega_A(t_1, t_2) \) can be found in [Kondrateva, M. V., Levin, A. B., Mikhalev, A. V., Pankratev, E. V. *Differential and Difference Dimension Polynomials*. Kluwer Acad. Publ., 1999.]
Let K be a $\Delta-\sigma$-field, $R = K\{y_1, \ldots, y_n\}$, and P a prime $\Delta-\sigma$-ideal in R. Let P^* denote the reflexive closure of P (P^* is also a prime) and for every $r, s \in \mathbb{N}$, let $R_{rs} = K[\{\tau y_i \mid \tau \in T(r, s), 1 \leq i \leq n\}]$. (It is a polynomial ring over K in indeterminates τy_i such that $\text{ord}_\Delta \tau \leq r$ and $\text{ord}_\sigma \tau \leq s$.)

Let $P_{rs} = P \cap R_{rs}$, $P^*_{rs} = P^* \cap R_{rs}$, and let L, L^*, L_{rs} and L^*_{rs} denote the quotient fields of the integral domains R/P, R/P^*, R_{rs}/P_{rs} and R_{rs}/P^*_{rs}, respectively.

If η_i denotes the canonical image of y_i in R/P^*, then L^* is a $\Delta-\sigma$-field extension of K, $L^* = K\langle \eta_1, \ldots, \eta_n \rangle$, and $L^*_{rs} \cong K(\{\tau \eta_i \mid \tau \in T(r, s), 1 \leq i \leq n\})$.
Theorem 3

With the above notation, let $\mathcal{A} = \{A_1, \ldots, A_p\}$ be a characteristic set of P^* and for any $r, s \in \mathbb{N}$, let

$U'_{rs} = \{u \in TY \mid \ord_{\Delta} u \leq r, \ord_{\sigma} u \leq s \text{ and } u \text{ is not a transform of any } v_{A_i}\}$ and

$U''_{r,s} = \{u \in TY \mid \ord_{\Delta} u \leq r, \ord_{\sigma} u \leq s \text{ and there exist } A \in \mathcal{A} \text{ such that } u = \tau v_A \text{ and } \ord_{\Delta}(\tau u_A) > r\}.$

Then $U'_{rs}(\eta) \cup U''_{rs}(\eta)$ is a transcendence basis of L^*_rs over K.

By Theorem 2, there exists $\phi^{(1)}(t_1, t_2) \in \mathbb{Q}[t_1, t_2]$ such that $\phi^{(1)}(r, s) = \text{Card } U'_{rs}$ for all sufficiently large $(r, s) \in \mathbb{N}^2$, $\deg_{t_1} \phi^{(1)} \leq m$, and $\deg_{t_2} \phi^{(1)} \leq 1$. Furthermore, $\text{Card } U''_{r,s}$ is expressed by a polynomial $\phi^{(2)}(t_1, t_2)$ which is an alternating sum of bivariate polynomials of the form $\binom{t_1 + m + a}{m}(t_2 + b)$ ($a, b \in \mathbb{Z}$).
It shows that there exists a polynomial $\phi_{P^*}(t_1, t_2) \in \mathbb{Q}[t_1, t_2]$ such that

(i) $\phi_{P^*}(r, s) = \text{tr. deg}_K L_{rs}^*$ for all sufficiently large $(r, s) \in \mathbb{N}^2$.

(ii) $\phi_{P^*}(t_1, t_2)$ is linear with respect to t_2 and $\deg_{t_1} \phi_{P^*} \leq m$; it is of the form

$$\phi_{P^*}(t_1, t_2) = \phi^{(1)}_{P^*}(t_1)t_2 + \phi^{(2)}_{P^*}(t_1)$$

where $\phi^{(1)}_{P^*}(t_1)$ and $\phi^{(2)}_{P^*}(t_1)$ are polynomials in one variable with rational coefficients that can be written as

$$\phi^{(1)}_{P^*}(t_1) = \sum_{i=0}^{m} a_i \binom{t_1 + i}{i} \quad \text{and} \quad \phi^{(2)}_{P^*}(t_1) = \sum_{i=0}^{m} b_i \binom{t_1 + i}{i}$$

with $a_i, b_i \in \mathbb{Z} \ (1 \leq i \leq m)$.
Theorem 4

Let K be a Δ-σ-field, $R = K\{y_1, \ldots, y_n\}$ and P a prime non-reflexive Δ-σ-ideal in R. For every $r, s \in \mathbb{N}$, let $R_{rs} = K[\{\tau y_i \mid \tau \in T(r, s), 1 \leq i \leq n\}]$, $P_{rs} = P \cap R_{rs}$, and $L_{rs} = q. f. (R_{rs}/P_{rs})$. Then there exists a bivariate polynomial $\psi_P(t_1, t_2) \in \mathbb{Q}[t_1, t_2]$ such that

(i) $\psi_P(r, s) = \text{tr. deg}_K L_{rs}$ for all sufficiently large $(r, s) \in \mathbb{N}^2$.

(ii) The polynomial $\psi_P(t_1, t_2)$ is linear with respect to t_2 and $\deg_{t_1} \psi_P \leq m$, so it can be written as

$$\psi_P(t_1, t_2) = \psi_P^{(1)}(t_1)t_2 + \psi_P^{(2)}(t_1)$$

where $\psi_P^{(1)}(t_1)$ and $\psi_P^{(2)}(t_1)$ are polynomials in one variable with rational coefficients of degree at most m.

In the case of a non-reflexive prime difference polynomial ideal \(P \) (when \(\Delta = \emptyset \)), this result was proved in

and

We will outline a proof based on the properties of characteristic sets. It will also give a method of computation of dimension polynomials associated with a non-reflexive prime \(\Delta-\sigma \)-polynomial ideal.
We start with the case $\Delta = \emptyset$ and use prefix σ- instead of $\Delta\sigma$-.
Let $A = \{A_1, \ldots, A_p\}$ be a characteristic set of P^* (the reflexive closure of P), let v_j denote the σ-leader of A_j ($1 \leq j \leq p$), and let $\eta_i = y_i + P \in K\{y_1, \ldots, y_n\}/P$ ($1 \leq i \leq n$).
Let $L = \text{q.f.}(K\{y_1, \ldots, y_n\}/P) = K(\{\sigma^k\eta_i \mid k \in \mathbb{N}, 1 \leq i \leq n\})$
and $L_s = K(\{\sigma^k\eta_i \mid 0 \leq k \leq s, 1 \leq i \leq n\})$.
For every $j = 1, \ldots, p$, let s_j be the smallest nonnegative integer such that $\sigma^{s_j}(A_j) \in P$. Furthermore, let

$$ V = \{v \in TY \mid v \neq \sigma^i v_j \text{ for any } i \in \mathbb{N}, 1 \leq j \leq p\}, $$
$$ V_r = \{v \in V \mid \text{ord}_\sigma v \leq r\} \ (r \in \mathbb{N}), \quad V(\eta) = \{v(\eta) \mid v \in V\}, $$
$$ W = \{\sigma^k v_j \mid 1 \leq j \leq p, 0 \leq k \leq s_j - 1\}, $$
and $$ W(\eta) = \{u(\eta) \mid u \in W\}. $$
It is easy to see that the set \(V(\eta) \) is algebraically independent over \(K \): if \(f(v_1(\eta), \ldots, v_k(\eta)) = 0 \) for some polynomial \(f \) and \(v_1, \ldots, v_k \in V \), then \(f(v_1, \ldots, v_k) \in P \subseteq P^* \) and \(f(v_1, \ldots, v_k) \) is reduced with respect to the characteristic set \(\mathcal{A} \), hence \(f = 0 \).

Furthermore, every element of the field \(L \) is algebraic over its subfield \(K(\,V(\eta) \cup W(\eta)) \). Let \(\{w_1, \ldots, w_q\} \) be a maximal subset of \(W \) such that the set \(\{w_1(\eta), \ldots, w_q(\eta)\} \) is algebraically independent over \(K(\,V(\eta)) \). Then \(V(\eta) \cup \{w_1(\eta), \ldots, w_q(\eta)\} \) is a transcendence basis of \(L/K \).

Since the set \(W \) is finite, there exists \(r_0 \in \mathbb{N} \) such that

(i) \(w_1, \ldots, w_q \in R_{r_0} = K[\{\sigma^k y_i \mid 0 \leq k \leq r_0, 1 \leq i \leq n\}] \);

(ii) \(r_0 \geq \max\{\text{ord}_\sigma v_j + s_j \mid 1 \leq j \leq p\} \);

(iii) Every element of \(W(\eta) \) is algebraic over the field \(K(\,V_{r_0}(\eta) \cup \{w_1(\eta), \ldots, w_q(\eta)\}) \).
Let $r \geq r_0$. $R_r = K[\{\sigma^k y_i \mid 1 \leq i \leq n, 0 \leq k \leq r\}]$, and $P_r = P \cap R_r$. Let L_r denote the quotient field of the integral domain R_r/P_r and $\zeta_i^{(r)} = y_i + P_r \in R_r/P_r \subseteq L_r \ (1 \leq i \leq n)$. Furthermore, let $\zeta^{(r)} = \{\zeta_1^{(r)}, \ldots, \zeta_n^{(r)}\}$, and $V_r(\zeta^{(r)}) = \{v(\zeta^{(r)}) \mid v \in V_r\}$. Then one can show that

$$B_r = V_r(\zeta^{(r)}) \bigcup \{w_1(\zeta^{(r)}), \ldots, w_q(\zeta^{(r)})\}$$

is a transcendence basis of L_r over K.

This completes the proof of the theorem in the case $\Delta = \emptyset$ and also shows that $\psi_P(t) = \phi_{P^*}(t) + q$ where q is a constant. As a consequence of this result we obtain that any strictly ascending chain of prime σ-ideals between P and P^* has length at most q and that $K\{y_1, \ldots, y_n\}$ satisfies the ascending chain condition for prime (not necessarily reflexive) σ-ideals.
In order to complete the proof Theorem 4 in the case \(\text{Card} \, \Delta = m > 0 \), we treat \(L_{rs} \) as the subfield \(K(\{\theta\sigma^j\xi_i \mid \theta \in \Theta(r), 0 \leq j \leq s, 1 \leq i \leq n\}) \) of the differential \((\Delta-) \) overfield \(K(\{\sigma^j\xi_i \mid 0 \leq j \leq s, 1 \leq i \leq n\})_\Delta \) of \(K \).

(Here \(\xi_i \) is the canonical image of \(y_i \) in the factor ring \(K\{\sigma^jy_i, 1 \leq j \leq s, 1 \leq i \leq n\}_\Delta / P \cap K\{\sigma^jy_i, 1 \leq j \leq s, 1 \leq i \leq n\}_\Delta \).

By the Kolchin’s theorem on differential dimension polynomial, for any \(s \in \mathbb{N} \), there exists a polynomial

\[
\chi_s(t) = \sum_{i=0}^{m} a_i(s) \binom{t + i}{i}
\]

\((a_i(s) \in \mathbb{Z})\) such that \(\chi_s(r) = \text{tr. deg}_K L_{rs} \) for all sufficiently large \(r \in \mathbb{N} \).
On the other hand, the first part of the proof (with the use of the finite set of \(\sigma \)-indeterminates \(\{ \Theta(r)y_i \mid \theta \in \Theta(r), 1 \leq i \leq n \} \) instead of \(\{y_1, \ldots, y_n\} \)) shows that

\[\text{tr. deg}_K L_{rs} = \text{Card } V_{rs} + \lambda(r) \]

where

\[V_{rs} = \{ u = \tau y_i \in TY \mid \tau \in T(r, s) \text{ and } u \neq \tau' v_j \text{ for any } \tau' \in T, 1 \leq j \leq p \}. \]

(\(v_j \) denotes the \(\sigma \)-leader of the element \(A_j \) of a characteristic set \(A = \{A_1, \ldots, A_p\} \) of the reflexive closure \(P^* \) of \(P \).)

Since the set \(W \) in the first part of the proof is finite and depends only on the \(\sigma \)-orders of terms of \(A_j, 1 \leq j \leq p \), the number of elements of the corresponding set in the general case depends only on \(r \); we have denoted it by \(\lambda(r) \).
By Theorem 2, there exist $r_0, s_0 \in \mathbb{N}$ and a bivariate numerical polynomial $\omega(t_1, t_2)$ such that $\omega(r, s) = \text{Card } V_{rs}$ for all $r \geq r_0$, $s \geq s_0$, $\deg_{t_1} \omega \leq m$ and $\deg_{t_2} \omega \leq 1$. Thus,

$$\text{tr. deg}_K L_{rs} = \omega(r, s) + \lambda(r)$$

for all $r \geq r_0$, $s \geq s_0$. At the same time, we have seen that

$$\text{tr. deg}_K L_{rs_0} = \chi_{s_0}(r) = \sum_{i=0}^{m} a_i(s_0) \binom{r+i}{i}$$

for all sufficiently large $r \in \mathbb{N}$ ($a_i(s_0) \in \mathbb{Z}$). It follows that $\lambda(r)$ is a polynomial of r for all sufficiently large $r \in \mathbb{N}$, say, for all $r \geq r_1$. Therefore, for any $s \geq s_0$, $r \geq \max\{r_0, r_1\}$,

$$\text{tr. deg}_K L_{rs} = \omega(r, s) + \lambda(r)$$

is expressed as a bivariate numerical polynomial in r and s.
Example

Let K be a Δ-σ-field with two basic derivations, $\Delta = \{\delta_1, \delta_2\}$, and one basic endomorphism σ. Let $K\{y\}$ be the ring of Δ-σ-polynomials in one Δ-σ-indeterminate y and P a linear (and therefore prime) Δ-σ-ideal of $K\{y\}$ generated by the Δ-σ-polynomial $A = \sigma^2 y + \sigma \delta_1^2 y + \sigma \delta_2^2 y$ (that is, $P = [A]$). Then $P^* = [B]$, where $B = \sigma y + \delta_1^2 y + \delta_2^2 y$, and $\{B\}$ is a characteristic set of the Δ-σ-ideal P^*. With the notation of the proof of Theorem 1, we have

$U'_rs = \{u \in TY \mid \ord_{\Delta} u \leq r, \ord_{\sigma} u \leq s$ and u is not a multiple of $\sigma y\}$ and $U''_rs = \{u \in TY \mid \ord_{\Delta} u \leq r, \ord_{\sigma} u \leq s$ and there is $\tau \in T$ such that $u = \tau(\sigma y)$ and $\ord_{\Delta}(\tau \delta_1^2) > r\}$.
Then \(\text{Card } U'_rs = \text{Card}\{\delta_i^j \delta_2^y \mid i + j \leq r\} = \binom{r+2}{2} \) and
\[
\text{Card } U''_rs = \text{Card}\{\sigma^i \delta_1^j \delta_2^k y \mid 1 \leq i \leq s, \, r - 2 < j + k \leq r\} = s \left(\binom{r+2}{2} - \binom{r+2-2}{2} \right) = (2r + 1)s.
\]
Since \(\sigma B \in P \), the proof of Theorem 4 shows that if \(\psi_P(t_1, t_2) \) is the \(\Delta-\sigma \)-dimension polynomial of \(P \), then
\[
\psi(r, s) = \text{Card } U'_rs + \text{Card } U''_rs + \text{Card}\{\sigma^i \delta_1^j y \mid i + j \leq r - 2\}
\]
for all sufficiently large \((r, s) \in \mathbb{N}^2\). It follows that
\[
\psi_P(t_1, t_2) = (2t_1 + 1)t_2 + \binom{t_1 + 2}{2} + \binom{t_1}{2}, \text{ that is}
\]
\[
\psi_P(t_1, t_2) = (2t_1 + 1)t_2 + t_1^2 + t_1 + 1.
\]
Thanks!