Outline

1. Motivation
2. Introduction
3. Stieltjes Boundary Conditions
4. Equitable Integro-Differential Operators
5. Extracting Green’s Function
6. Examples
7. Conclusion
Example of four point Boundary Problem.

Given $f \in C^\infty[a, b]$, find $u \in C^\infty[a, b]$ such that

\[
-u'' = f,
\]

\[
u(0) + u(1/3) = u(1) + u(2/3) = 0.
\]
Example of four point Boundary Problem.

Given $f \in C^\infty[a, b]$, find $u \in C^\infty[a, b]$ such that

$$-u'' = f,$$

$$u(0) + u(1/3) = u(1) + u(2/3) = 0.$$

- Represented by pair $(-D^2, [0] + [1/3], [1] + [2/3])$.
Example of four point Boundary Problem.

Given \(f \in C^\infty[a, b] \), find \(u \in C^\infty[a, b] \) such that

\[
\begin{align*}
-u'' &= f, \\
u(0) + u(1/3) &= u(1) + u(2/3) = 0.
\end{align*}
\]

- Represented by pair \((-D^2, [0] + [1/3], [1] + [2/3])\).

- Evaluation functionals: []
Similarly: Regular boundary problem \((T, B)\) for LODE.
Meaning \(\exists\) unique solution \(u \in C^\infty[a, b]\) for all \(f \in C^\infty[a, b]\):

\[
Tu = f, \\
\beta(u) = 0 (\beta \in B).
\]

Algorithm to compute Green's operator \(G\):
\(f \mapsto u\).

However, sometimes we want Green's functions. Why?
- Nice intuition (see below).
- Standard form for solutions.
- Useful for communicating with engineers.

How to extract Green's function from Green's operators?

Markus Rosenkranz, Nitin Serwa (Uni. of Kent)

Green's Functions

ISSAC, 2015 4 / 21
Similarly: Regular boundary problem \((T, \mathcal{B})\) for LODE.
Meaning \(\exists\) unique solution \(u \in C^\infty[a, b]\) for all \(f \in C^\infty[a, b]\):

\[
Tu = f, \\
\beta(u) = 0 (\beta \in \mathcal{B}).
\]

- Algorithm to compute Green’s operator \(G : f \mapsto u\).
Similarly: Regular boundary problem \((T, \mathcal{B})\) for LODE.
Meaning \(\exists\) unique solution \(u \in C^\infty[a, b]\) for all \(f \in C^\infty[a, b]\):

\[
Tu = f, \\
\beta(u) = 0 \ (\beta \in \mathcal{B}).
\]

- Algorithm to compute Green’s operator \(G : f \mapsto u\).
- However, sometimes we want Green’s functions. Why?
Similarly: **Regular** boundary problem \((T, \mathcal{B})\) for LODE.
Meaning \(\exists\) unique solution \(u \in C^{\infty}[a, b]\) for all \(f \in C^{\infty}[a, b]\):

\[
\begin{align*}
Tu &= f, \\
\beta(u) &= 0 (\beta \in \mathcal{B}).
\end{align*}
\]

- Algorithm to compute Green’s operator \(G : f \mapsto u\).
- However, sometimes we want **Green’s functions**. Why?
 - Nice intuition (see below).
 - Standard form for solutions.
 - Useful for communicating with engineers.
Similarly: **Regular** boundary problem \((T, \mathcal{B})\) for LODE.
Meaning \(\exists\) unique solution \(u \in C^\infty[a, b]\) for all \(f \in C^\infty[a, b]\):

\[
Tu = f, \\
\beta(u) = 0 (\beta \in \mathcal{B}).
\]

- Algorithm to compute Green’s operator \(G : f \mapsto u\).
- However, sometimes we want **Green’s functions**. Why?
 - Nice intuition (see below).
 - Standard form for solutions.
 - Useful for communicating with engineers.
- How to extract Green’s function from Green’s operators?
Consider again general boundary problem for LODE

\[
Tu = f, \\
\beta(u) = 0 \quad (\beta \in \mathcal{B}).
\]
Intuition behind Green’s Function.

Consider again general boundary problem for LODE

\[Tu = f, \]
\[\beta(u) = 0 (\beta \in \mathcal{B}). \]

- Green’s function \(g_\xi \) is solution for \(f = \delta_\xi \).
Consider again general boundary problem for LODE

\[
Tu = f, \\
\beta(u) = 0 (\beta \in B).
\]

- Green’s function \(g_\xi \) is solution for \(f = \delta_\xi \).
- Note that \(g(x, \xi) = g_\xi(x) \) and “\(\delta(x, \xi) = \delta_\xi(x) \)”.

Markus Rosenkranz, Nitin Serwa (Uni. of Kent)
Intuition behind Green’s Function.

Consider again general boundary problem for LODE

\[\begin{align*}
Tu &= f, \\
\beta(u) &= 0 \ (\beta \in \mathcal{B}).
\end{align*} \]

- Green’s function \(g_\xi \) is solution for \(f = \delta_\xi \).
- Note that \(g(x, \xi) = g_\xi(x) \) and “\(\delta(x, \xi) = \delta_\xi(x) \)”.

\[
\begin{align*}
\quad u &= \int g_\xi f(\xi) \, d\xi \\
\implies Tu &= \int Tg_\xi f(\xi) \, d\xi = \int \delta_\xi f(\xi) \, d\xi = f \\
\quad \beta(u) &= \int \beta(g_\xi) f(\xi) \, d\xi = 0
\end{align*}
\]
Extraction of Green’s functions: $G \leadsto g(x, \xi)$
Extraction of Green’s functions: $G \mapsto g(x, \xi)$

Well known for “classical case” [3].
Extraction of Green’s functions: $G \leadsto g(x, \xi)$

Well known for “classical case” [3].

Sometimes one needs Stieltjes boundary conditions:
Extraction of Green’s functions: $G \mapsto g(x, \xi)$

Well known for “classical case” [3].

Sometimes one needs Stieltjes boundary conditions:
- More than two evaluation points \rightarrow multipoint BP.
Extraction of Green’s functions: $G \leadsto g(x, \xi)$

Well known for “classical case” [3].

Sometimes one needs Stieltjes boundary conditions:
- More than two evaluation points \rightarrow multipoint BP.
- Derivatives of arbitrary order \rightarrow ill-posed BP.
Extraction of Green’s functions: \(G \mapsto g(x, \xi) \)

Well known for “classical case” [3].

Sometimes one needs **Stieltjes boundary conditions**:

- More than two evaluation points \(\rightarrow \) **multipoint BP.**
- Derivatives of arbitrary order \(\rightarrow \) **ill-posed BP.**
- Global terms in the form of definite integrals \(\rightarrow \) **nonlocal BP.**
Extraction of Green’s functions: $G \rightsquigarrow g(x, \xi)$

Well known for “classical case” [3].

Sometimes one needs Stieltjes boundary conditions:

- More than two evaluation points \rightarrow multipoint BP.
- Derivatives of arbitrary order \rightarrow ill-posed BP.
- Global terms in the form of definite integrals \rightarrow nonlocal BP.

Are there Green’s functions $g(x, \xi)$ for such Stieltjes BPs?
Extraction of Green’s functions: $G \leadsto g(x, \xi)$

Well known for “classical case” [3].

Sometimes one needs **Stieltjes boundary conditions**:
- More than two evaluation points \rightarrow multipoint BP.
- Derivatives of arbitrary order \rightarrow ill-posed BP.
- Global terms in the form of definite integrals \rightarrow nonlocal BP.

Are there Green’s functions $g(x, \xi)$ for such Stieltjes BPs?
Can we extract it from G?
Recall algebraic setting for boundary problems [3]:
Recall algebraic setting for boundary problems [3]:

- Ordinary integro-differential K-algebra $(\mathcal{F}, \partial, \int)$.
Recall algebraic setting for boundary problems [3]:

- Ordinary integro-differential K-algebra $(\mathcal{F}, \partial, \int)$.
- Characters on \mathcal{F}: multiplicative linear functionals.
Recall algebraic setting for boundary problems [3]:

- Ordinary integro-differential K-algebra $(\mathcal{F}, \partial, \int)$.
- Characters on \mathcal{F}: multiplicative linear functionals.
- Ring of integro-differential operators over \mathcal{F} with characters Φ.
Recall algebraic setting for boundary problems [3]:

- Ordinary integro-differential K-algebra $(\mathcal{F}, \partial, \int)$.
- Characters on \mathcal{F}: multiplicative linear functionals.
- Ring of integro-differential operators over \mathcal{F} with characters Φ.
 - Standard integro-differential operator ring $\mathcal{F}_\Phi[\partial, \int]$.
Recall algebraic setting for boundary problems [3]:

- Ordinary integro-differential K-algebra $(\mathcal{F}, \partial, \int)$.

- Characters on \mathcal{F}: multiplicative linear functionals.

- Ring of integro-differential operators over \mathcal{F} with characters Φ.
 - Standard integro-differential operator ring $\mathcal{F}_\Phi[\partial, \int]$
 - Equitable operator ring $\mathcal{F}[\partial, \int_\Phi]$.
Recall algebraic setting for boundary problems [3]:

- Ordinary integro-differential K-algebra $(\mathcal{F}, \partial, \int)$.
- Characters on \mathcal{F}: multiplicative linear functionals.

- Ring of integro-differential operators over \mathcal{F} with characters Φ.
 - Standard integro-differential operator ring $\mathcal{F}_\Phi[\partial, \int]$
 - Equitable operator ring $\mathcal{F}[\partial, \int_\Phi]$.
 - Isomorphic rings (alternative normal forms).
Recall algebraic setting for boundary problems [3]:

- Ordinary integro-differential K-algebra $(\mathcal{F}, \partial, \int)$.
- Characters on \mathcal{F}: multiplicative linear functionals.
- Ring of integro-differential operators over \mathcal{F} with characters Φ.
 - Standard integro-differential operator ring $\mathcal{F}_\Phi[\partial, \int]$
 - Equitable operator ring $\mathcal{F}[\partial, \int_\Phi]$.
 - Isomorphic rings (alternative normal forms).
- Later on will have $\mathcal{F} = C^\infty(\mathbb{R})$ again.
Stieltjes Boundary Conditions

Definition

The elements of right ideal $|\Phi\rangle = \Phi \cdot \mathcal{F}_\Phi[\partial, \int]$ are called Stieltjes boundary conditions.
Definition

The elements of right ideal \(|\Phi\rangle = \Phi \cdot \mathcal{F}_\Phi[\partial, \int]\) are called Stieltjes boundary conditions.

Normal forms:

\[
\beta(u) = \alpha_1(u^{k_1}) + \cdots + \alpha_r(u^{k_r}) + \int_{\beta_1}^\gamma + \cdots + \int_{\beta_s}^\gamma
\]
The elements of right ideal $|\Phi) = \Phi \cdot \mathcal{F}_\Phi[\partial, \int]$ are called Stieltjes boundary conditions.

Normal forms:

$$\beta(u) = \alpha_1(u^{k_1}) + \cdots + \alpha_r(u^{k_r}) + \int_{\beta_1}^{\gamma_1} + \cdots + \int_{\beta_s}^{\gamma_s}$$

Boundary operators:

Two-sided ideal (Φ)
Stieltjes Boundary Conditions

Definition

The elements of right ideal \(|\Phi) = \Phi \cdot \mathcal{F}[\partial, \int] \) are called Stieltjes boundary conditions.

Normal forms:

\[\beta(u) = \alpha_1(u^{k_1}) + \cdots + \alpha_r(u^{k_r}) + \int_{\beta_1}^{\gamma_1} + \cdots + \int_{\beta_s}^{\gamma_s} \]

Boundary operators:

Two-sided ideal \((\Phi) = \) left \(\mathcal{F} \)-module generated by \(|\Phi) \)
Definition
The elements of right ideal $|\Phi) = \Phi \cdot \mathcal{F}_\Phi[\partial, \int]$ are called Stieltjes boundary conditions.

Normal forms:
$$\beta(u) = \alpha_1(u^{k_1}) + \cdots + \alpha_r(u^{k_r}) + \int_{\beta_1}^{\gamma_1} + \cdots + \int_{\beta_s}^{\gamma_s}$$

Boundary operators:
Two-sided ideal $(\Phi) =$ left \mathcal{F}-module generated by $|\Phi)$

Standard decomposition:
$$\mathcal{F}_\Phi[\partial, \int] = \mathcal{F}[\partial] + \mathcal{F}[\int] + (\Phi)$$
Equitable operator ring used for extracting Green’s function via

\[\iota : \mathcal{F}_\Phi[\partial, \int] \to \mathcal{F}[\partial, \int_\Phi], \]

the translation isomorphism defined as follows:
Equitable Operators

Equitable operator ring used for extracting Green’s function via

\[\iota: \mathcal{F}_\Phi[\partial, \int] \rightarrow \mathcal{F}[\partial, \int_\Phi], \]

the translation isomorphism defined as follows:

- Fixes \(\mathcal{F} \) and \(\partial \).
Equitable operator ring used for extracting Green’s function via

$$\nu: \mathcal{F}_\Phi[\partial, \int] \rightarrow \mathcal{F}[\partial, \int_\Phi],$$

the translation isomorphism defined as follows:

- Fixes \mathcal{F} and ∂.
- Translate characters by $\nu(\varphi) = \text{id} - \int_\varphi \partial$.
Equitable operators ring used for extracting Green’s function via

\[\iota : \mathcal{F}_\Phi [\partial, \int] \rightarrow \mathcal{F}[\partial, \int_\Phi], \]

the translation isomorphism defined as follows:

- Fixes \(\mathcal{F} \) and \(\partial \).
- Translate characters by \(\iota(\varphi) = \text{id} - \int \varphi \partial \).
- Translate back integrals by \(\iota^{-1}(\int \varphi) = (\text{id} - \varphi)\int \).
Interval $J \subset \mathbb{R}$ containing all evaluation points.
Extracting Green’s Function

Interval \(J \subseteq \mathbb{R} \) containing all evaluation points.

Theorem

The Green’s function of any regular Stieltjes boundary problem with \(m \) evaluations \(\alpha_1, \ldots, \alpha_m \) has the form \(g(x, \xi) = \tilde{g}(x, \xi) + \hat{g}(x, \xi) \), where the functional part \(\tilde{g} \in C(J^2) \) is defined by the \(2(m - 1) \) case branches

\[
\xi \in [\alpha_i, \alpha_{i+1}] \quad x \leq \xi,
\]

\[
\xi \in [\alpha_i, \alpha_{i+1}] \quad \xi \leq x,
\]

while the distributional part \(\hat{g}(x, \xi) \) is an \(\mathcal{F} \)-linear combination of the \(\delta(\xi - \alpha_i) \) and their derivatives.
Illustration of Proof

Consider an example:

- **Green’s operator**

\[
G = x \frac{d}{dx} - \int x + x[1] \int x - x[1] \int + e^x[1] \partial \in \mathcal{F}_\Phi[\partial, \int].
\]
Illustration of Proof

Consider an example:

- Green’s operator
 \[G = x \int - \int x + x[1] \int x - x[1] \int + e^x [-1] \partial \in F_\Phi [\partial, \int]. \]
- Translate to equitable ring by \([\alpha] \int \rightarrow \int_0 - \int_\alpha.\)
Consider an example:

- **Green’s operator**
 \[G = x \int - \int x + x [1] \int x - x [1] \int + e^x [-1] \partial \in \mathcal{F}_\Phi[\partial, \int]. \]
- **Translate to equitable ring by** \([\alpha] \int \rightarrow \int_0 - \int_\alpha.\]
- **Yields** \[G = x \int_0 x - x \int_1 x - \int_0 x + x \int_1 + e^x [-1] \partial \in \mathcal{F}[\partial, \int_\Phi]. \]
Consider an example:

- Green's operator
 \[G = x \int - x \int x + x [1] \int x - x [1] \int + e^x [-1] \partial \in \mathcal{F}_\Phi[\partial, \int]. \]
- Translate to equitable ring by \([\alpha \int \rightarrow \int_0 - \int_\alpha]. \]
- Yields \(G = x \int_0 x - x \int_1 x - \int_0 x + x \int_1 + e^x [-1] \partial \in \mathcal{F}[\partial, \int_\Phi]. \]
- Extract \(\tilde{g} \) by \(f \int_\alpha g = f(x) g(\xi) [\alpha \leq \xi][\xi \leq x] \]
 \[- f(x) g(\xi) [\xi \leq \alpha][x \leq \xi]. \]
Consider an example:

- Green's operator
 \[G = x \int - \int x + x[1] \int x - x[1] \int + e^x [-1] \partial \in \mathcal{F}_\Phi[\partial, \int]. \]

- Translate to equitable ring by \([\alpha] \int \rightarrow \int_0 - \int_\alpha.\]

- Yields \[G = x \int_0 x - x \int_1 x - \int_0 x + x \int_1 + e^x [-1] \partial \in \mathcal{F}[\partial, \int_\Phi]. \]

- Extract \(\tilde{g} \) by \[f \int_\alpha g = f(x) g(\xi) [\alpha \leq \xi][\xi \leq x] \]
 \[- f(x) g(\xi) [\xi \leq \alpha][x \leq \xi]. \]

- Extract \(\hat{g} \) by \[f [\alpha] \partial^i = (-1)^i f(x) \delta^{(i)}(\xi - \alpha). \]
Illustration of Proof

Consider an example:

- Green’s operator
 \[G = x \int - \int x + x [1] \int x - x [1] \int + e^x [−1] \partial \in \mathcal{F}_\Phi[\partial, \int]. \]
- Translate to equitable ring by \([\alpha] \int \rightarrow \int_0 - \int_\alpha.\)
- Yields \(G = x \int_0 x - x \int_1 x - \int_0 x + x \int_1 + e^x [−1] \partial \in \mathcal{F}[\partial, \int_\Phi].\)
- Extract \(\tilde{g}\) by \(f \int_\alpha g = f(x) g(\xi) [\alpha \leq \xi][\xi \leq x]\)
 \[- f(x) g(\xi) [\xi \leq \alpha][x \leq \xi]. \]
- Extract \(\hat{g}\) by \(f [\alpha] \partial^i = (-1)^i f(x) \delta^{(i)}(\xi - \alpha).\)
- Resulting Green’s function:
 \[\tilde{g}(x, \xi) = \begin{cases} (x - 1)x & \text{for } 0 \leq \xi \leq x \leq 1, \\ x(\xi - 1) & \text{for } 0 \leq x \leq \xi \leq 1. \end{cases} \]
 \[\hat{g}(x, \xi) = -e^x \delta'(\xi + 1) \]
Back to our first example:

\[-u'' = f,\]
\[u(0) + u(1/3) = u(1) + u(2/3) = 0\]
Back to our first example:

\[-u'' = f,\]
\[u(0) + u(1/3) = u(1) + u(2/3) = 0\]

- Green’s operator (computed using \textsc{INTDIFFOP} by A. Korporal):

\[G = x \int - \int x + (-5/24 + x/4)[1/3] \int + (5/8 - 3x/4)[1/3] \int x + (1/8 - 3x/4)[1] \int x + (1/12 - x/2)[2/3] \int x + (-1/8 + 3x/4)[2/3] \int x\]
Four Point Boundary Problem

Back to our first example:

\[-u'' = f,\]
\[u(0) + u(1/3) = u(1) + u(2/3) = 0\]

- Green’s operator (computed using INTDIFFOP by A. Korporal):

\[
G = x \int - \int x + (-5/24 + x/4)[1/3] \int + (5/8 - 3x/4)[1/3] \int x + (1/8 - 3x/4)[1] \int x + (1/12 - x/2)[2/3] \int + (-1/8 + 3x/4)[2/3] \int x
\]

- Green’s function (computed using extra code)

\[
g(x, \xi) = \begin{cases}
(3/4)x\xi - (5/8)\xi & : 0 \leq \xi \leq 1/3, \xi \leq x \\
(3/4)x\xi + (3/8)\xi - x & : 0 \leq \xi \leq 1/3, x \leq \xi \\
(3/2)x\xi - (5/4)\xi - (1/4)x + 5/24 & : 1/3 \leq \xi \leq 2/3, \xi \leq x \\
(3/2)x\xi - (1/4)\xi - (5/4)x + 5/24 & : 1/3 \leq \xi \leq 2/3, x \leq \xi \\
(3/4)x\xi - (9/8)\xi + (1/4)x + 1/8 & : 2/3 \leq \xi \leq 1, \xi \leq x \\
(3/4)x\xi - (1/8)\xi - (3/4)x + 1/8 & : 2/3 \leq \xi \leq 1, x \leq \xi
\end{cases}
\]
Graph of its Green’s Function
Example with three evaluations, nonlocal part and higher-order derivative:

\[
\begin{align*}
 u'' - u &= f, \\
 u'''(-1) - \int_{0}^{1} u(\xi) \xi \, d\xi &= 0, \\
 u'(-1) - u''(1) + \int_{-1}^{1} u(\xi) \, d\xi &= 0,
\end{align*}
\]
Nonclassical Boundary Problem

Example with three evaluations, nonlocal part and higher-order derivative:

\[
\begin{align*}
 u'' - u &= f, \\
 u'''(-1) - \int_0^1 u(\xi) \xi \, d\xi &= 0, \\
 u'(-1) - u''(1) + \int_{-1}^1 u(\xi) \, d\xi &= 0,
\end{align*}
\]

Green’s operator (with \(\sigma := 2(2e - 3)(e - 1) \) for brevity):

\[
\begin{align*}
 \sigma G &= \sigma/2 \left(e^x \int e^{-x} - e^{-x} \int e^x \right) \\
 &+ 2(-e^{x+3} + e^{x+2} - e^{x+1} + e^{-x+2} - e^{-x+1})([-1] \partial + [1] \int x) \\
 &+ (e - 1)(-e^{x+2} - 2e^{x+1} + e^{-x+1})([-1] \int + [1] \int) \\
 &+ (3e^{x+2} - e^{x+1} - 3e^{-x+1} + 3e^{-x})[1] \int e^x \\
 &+ (2e^{x+2} - 3e^{x+1})(e^{-1}[-1] \int e^{-x} + e [-1] \int e^x) \\
 &+ (-e^{x+3} - e^{x+2} + 2e^{x+1} + e^{-x+2} - e^{-x+1})[1]
\end{align*}
\]
Green’s Function for Nonclassical Problem

Green’s function

\[\hat{g}(x, \xi) = \left(-e^x + 3 - e^x + 2 + 2e^x + 1 + e^{-x} + 2 - e^{-x} + 1 \right) \delta(\xi - 1) + 2 \left(-e^x + 3 + e^x + 2 - e^x + 1 + e^{-x} + 2 - e^{-x} + 1 \right) \delta'(\xi - 1) \]

Functional part

\[\tilde{g}(x, \xi) = \begin{cases} -1 \leq \xi \leq 0 & \xi \leq x \\
3e^x + 2 + \xi + 3e^x - \xi - 2e^x + 1 - \xi - 2e^x + 2e^x + \xi + 3e^x + 2e^{-x} + 1 - \xi + e^{-x} + 2e^x - \xi + 2e^{-x} + 2e^x - \xi + e^{-x} + 3e^x + 3e^x - \xi + e^{-x} + 5e^x + 1 + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + 2e^x + e^{-x} + 1 + e^x + 3e^x + 2e^{-x} + 1 - \xi + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^x - \xi + e^{-x} + 2e^x + e^{-x} + 1 - \xi + e^{-x} + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + e^x + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + e^{-x} + 1 - \xi + e^x + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + 2e^x + e^{-x} + 1 - \xi + e^{-x} + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + e^x + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + e^{-x} + 1 - \xi + e^x + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + e^{-x} + 1 - \xi + e^x + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + e^{-x} + 1 - \xi + e^x + 3e^x + 3e^x - \xi + e^{-x} + 2e^x + 2e^{-x} + 2e^x - \xi + e^{-x} + e^{-x} + 1 \end{cases} \]

Markus Rosenkranz, Nitin Serwa (Uni. of Kent)
Green’s function

- Distributional part

\[
\sigma \hat{g}(x, \xi) = \left(-e^{x+3} - e^{x+2} + 2e^{x+1} + e^{-x+2} - e^{-x+1} \right) \delta(\xi - 1) \\
+ 2 \left(-e^{x+3} + e^{x+2} - e^{x+1} + e^{-x+2} - e^{-x+1} \right) \delta'(\xi - 1)
\]
Green’s Function for Nonclassical Problem

Green’s function

- **Distributional part**

\[
\sigma \hat{g}(x, \xi) = (-e^{x+3} - e^{x+2} + 2e^{x+1} + e^{-x+2} - e^{-x+1}) \delta(\xi - 1)
+ 2 (-e^{x+3} + e^{x+2} - e^{x+1} + e^{-x+2} - e^{-x+1}) \delta'(\xi - 1)
\]

- **Functional part**

\[
\tilde{g}(x, \xi) = \begin{cases}
-1 \leq \xi \leq 0 \\
\xi \leq x \\
-1 \leq \xi \leq 0 \\
x \leq \xi \\
0 \leq \xi \leq 1 \\
\xi \leq x \\
0 \leq \xi \leq 1 \\
x \leq \xi
\end{cases}
\begin{align*}
&= 3e^{x+2+\xi} + 3e^{x-\xi} - 2e^{x+1-\xi} - 2e^{3+x+\xi} \\
&\quad + e^{3+x} + e^{-x+1} + e^{x+2} - e^{-x+2} - 2e^{x+1} \\
&= -2e^{x+1} + 2e^{-x+2+\xi} - 5e^{-x+1+\xi} - 2e^{x+2-\xi} \\
&\quad - 2e^{3+x+\xi} + 3e^{-x+\xi} + e^{-x+1} + e^{x+2} \\
&\quad + e^{3+x} + 3e^{x+1-\xi} + 3e^{x+2+\xi} - e^{-x+2} \\
&= -2e^{3+x+\xi} - 2e^{-x+1+\xi} + 2e^{x+2+\xi} + 2e^{-x+2+\xi} \\
&\quad - 2e^{x+1+\xi} + 3e^{x+2+\xi} + 3e^{-x-\xi} - 5e^{x+1-\xi} \\
&\quad + 2e^{-x+1+\xi} - e^{x+1+\xi} - 2e^{-x+2+\xi} + 2e^{x+2-\xi} \\
&\quad - e^{3+x} - e^{-x+1} - e^{x+2} + e^{-x+2} + 2e^{x+1} \\
&= -2e^{3+x+\xi} - 2e^{-x+1+\xi} + 2e^{x+2+\xi} + 2e^{-x+2+\xi} \\
&\quad - 2e^{x+1+\xi} + 3e^{-x+\xi} + 3e^{x+2+\xi} - e^{3+x} \\
&\quad - e^{-x+1} - e^{x+2} + e^{-x+2} + 2e^{x+1} \\
&\quad - 3e^{-x+1+\xi} - e^{x+1+\xi}
\end{align*}
\]
Graph of Functional Part of its Green’s Function
From Green’s operator to Green’s function:

Form of Green’s functions:

\[g(x, \xi) = \tilde{g}(x, \xi) + \hat{g}(x, \xi). \]

Functional part \(\tilde{g}(x, \xi) \) defined by \(2(m-1) \) case branches.

Distributional part \(\hat{g}(x, \xi) \) is \(F \)-linear combination of \(\delta(\xi - \alpha_i) \) and their derivatives.
From Green’s operator to Green’s function:

- Generalised Green’s functions for Stieltjes BPs.
Summary

From Green’s operator to Green’s function:

- Generalised Green’s functions for Stieltjes BPs.
- Extraction algorithm from Green’s operators.

Form of Green’s functions:

\[g(x,\xi) = \tilde{g}(x,\xi) + \hat{g}(x,\xi). \]

Functional part \(\tilde{g}(x,\xi) \) defined by \(2^{(m-1)} \) case branches.

Distributional part \(\hat{g}(x,\xi) \) is \(F \)-linear combination of \(\delta(\xi - \alpha_i) \) and their derivatives.

Markus Rosenkranz, Nitin Serwa (Uni. of Kent)

Green’s Functions

ISSAC, 2015
Summary

From Green’s operator to Green’s function:

- Generalised Green’s functions for Stieltjes BPs.
- Extraction algorithm from Green’s operators.

Form of Green’s functions:

- Decomposition $g(x, \xi) = \tilde{g}(x, \xi) + \hat{g}(x, \xi)$.
From Green’s operator to Green’s function:

- Generalised Green’s functions for Stieltjes BPs.
- Extraction algorithm from Green’s operators.

Form of Green’s functions:

- Decomposition $g(x, \xi) = \tilde{g}(x, \xi) + \hat{g}(x, \xi)$.
- Functional part $\tilde{g}(x, \xi)$ defined by $2(m - 1)$ case branches.
From Green’s operator to Green’s function:

- Generalised Green’s functions for Stieltjes BPs.
- Extraction algorithm from Green’s operators.

Form of Green’s functions:

- Decomposition $g(x, \xi) = \tilde{g}(x, \xi) + \hat{g}(x, \xi)$.
- Functional part $\tilde{g}(x, \xi)$ defined by $2(m - 1)$ case branches.
- Distributional part $\hat{g}(x, \xi)$ is \mathcal{F}-linear combination of $\delta(\xi - \alpha_i)$ and their derivatives.
In this paper: $\mathcal{F} = \mathcal{C}^\infty(\mathbb{R})$.

Need algebraic structures where these Green's functions "live":

- **Functional part** $g(x, \xi)$: Ring $\mathbb{F} \otimes \mathbb{F}$ is sufficient.
- **Distributional part** $\hat{g}(x, \xi)$: Integro-differential module generated over $\mathbb{F} \otimes \mathbb{F}$ by "algebraic Diracs".
In this paper: $\mathcal{F} = C^\infty(\mathbb{R})$. How about general $(\mathcal{F}, \partial, \int)$?
Future work

In this paper: $\mathcal{F} = C^\infty(\mathbb{R})$. How about general $(\mathcal{F}, \partial, \int)$?

Need algebraic structures where these Green’s functions “live”:
Future work

In this paper: $\mathcal{F} = C^\infty(\mathbb{R})$. How about general $(\mathcal{F}, \partial, \int)$?

Need algebraic structures where these Green’s functions “live”:

- Functional part $g(x, \xi)$: Ring $\mathcal{F} \otimes \mathcal{F}$ is sufficient.
In this paper: $\mathcal{F} = C^\infty(\mathbb{R})$. How about general $(\mathcal{F}, \partial, \int)$?

Need algebraic structures where these Green’s functions “live”:

- Functional part $g(x, \xi)$: Ring $\mathcal{F} \otimes \mathcal{F}$ is sufficient.
- Distributional part $\hat{g}(x, \xi)$: Integro-differential module generated over $\mathcal{F} \otimes \mathcal{F}$ by “algebraic Diracs”.

Markus Rosenkranz, Nitin Serwa (Uni. of Kent)
Thank you
A. Korporal, G. Regensburger, and M. Rosenkranz.
Also presented as a poster at ISSAC '10.

M. Rosenkranz and G. Regensburger.
Integro-differential polynomials and operators.

M. Rosenkranz and G. Regensburger.
Solving and factoring boundary problems for linear ordinary differential equations in differential algebras.
M. Rosenkranz.
A new symbolic method for solving linear two-point boundary value problems on the level of operators.

I. Stakgold and M. Holst.
Green’s functions and boundary value problems.