Symbolic-Numeric Algorithms for Computing Validated Results

Lihong Zhi
Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, China

ISSAC 2014, July 22-25, Kobe, Japan

Joint work with E. Kaltofen, M. Safey El Din, A. Greuet, F. Guo, Q. Guo S. Hutton, B. Li, N. Li, Y. Ma, C. Wang, Z. Yang and Y. Zhu

What is Symbolic-Numeric Computation?

- Definition: the use of software that combines symbolic and numeric methods to solve problems [Wikipedia]

What is Symbolic-Numeric Computation?

- Definition: the use of software that combines symbolic and numeric methods to solve problems [Wikipedia]
- Objective: compute reliable results faster.

What is Symbolic-Numeric Computation?

- Definition: the use of software that combines symbolic and numeric methods to solve problems [Wikipedia]
- Objective: compute reliable results faster.
- Challenge: solve mathematical problems that today are not solvable by numerical or symbolic methods alone [Corless,Kaltofen,Watt 2003]

Computing Validated Results via Symbolic-numeric Algorithm

- Compute an approximate solution of good quality for a given problem using numeric algorithms.

Computing Validated Results via Symbolic-numeric Algorithm

- Compute an approximate solution of good quality for a given problem using numeric algorithms.
- Verify the computed results using exact rational arithmetic or interval arithmetic.

Computing Validated Results via Symbolic-numeric Algorithm

- Compute an approximate solution of good quality for a given problem using numeric algorithms.
- Verify the computed results using exact rational arithmetic or interval arithmetic.

Validated Results for Two Problems

- Certification using sum-of-squares [Peyrl, Parrilo'07,08; Kaltofen, Li, Yang, Zhi'08,09; Ma, Zhi'10; Monniaux, Corbineau'11; Guo, Kaltofen, Zhi'12; Greuet, Guo, Safey El Din, Zhi'12]
- Verification of solutions of polynomial systems [Beltran, Leykin'12; Hauenstein, Sottile'12; Kanzawa, Oishi'99, Mantzaflaris, Mourrain'11; Rump, Graillat'09, Li, Zhi'12,13,14; Yang, Zhi, Zhu'13]

Certification Using Sum-Of-Squares

Emil Artin's 1927 Theorem (Hilbert's 17th Problem)

$$
\begin{gathered}
\forall \xi_{1}, \ldots, \xi_{n} \in \mathbb{R}: f\left(\xi_{1}, \ldots, \xi_{n}\right) \geq 0, \quad f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right] \\
\mathbb{1} \\
\exists u_{i}, v_{j} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]: f\left(X_{1}, \ldots, X_{n}\right)=\frac{\sum_{i=1}^{m} u_{i}^{2}}{\sum_{j=1}^{m} v_{j}^{2}} \\
\mathbb{}
\end{gathered} \quad \begin{aligned}
& \exists \text { rational } W^{[1]} \succeq 0, W^{[2]} \succeq 0: f=\frac{m_{d}^{T} W^{[1]} m_{d}}{m_{e}^{T} W^{[2]} m_{e}} \\
& \quad \text { with } m_{d}\left(X_{1}, \ldots, X_{n}\right), m_{e}\left(X_{1}, \ldots, X_{n}\right) \text { vectors of terms }
\end{aligned}
$$

$W \succeq 0$ (positive semidefinite)

$$
\Longleftrightarrow W=P L D L^{T} P^{T}, D \text { diagonal, } D_{i, i} \geq 0 \text { (Cholesky) }
$$

Theodore Motzkin's 1967 Polynomial
(3 arithm. mean -3 geom. mean) $\left(x^{4} y^{2}, x^{2} y^{4}, z^{6}\right.$)

$$
=x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}
$$

is positive semidefinite (AGM inequality) but not a sum-of-squares.
(3 arithm. mean -3 geom. mean) $\left(x^{4} y^{2}, x^{2} y^{4}, z^{6}\right.$)

$$
=x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}
$$

is positive semidefinite (AGM inequality) but not a sum-of-squares.

However,

$$
\begin{aligned}
& \left(x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}\right)\left(\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{\mathbf{2}}\right)= \\
& \quad\left(z^{4}-x^{2} y^{2}\right)^{2}+3\left(x y z^{2}-\frac{x y^{3}}{2}-\frac{x^{3} y}{2}\right)^{2}+\left(\frac{x y^{3}}{2}-\frac{x^{3} y}{2}\right)^{2} \\
& \quad+\left(x z^{3}-x y^{2} z\right)^{2}+\left(y z^{3}-x^{2} y z\right)^{2}
\end{aligned}
$$

(3 arithm. mean -3 geom. mean) $\left(x^{4} y^{2}, x^{2} y^{4}, z^{6}\right.$)

$$
=x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}
$$

is positive semidefinite (AGM inequality) but not a sum-of-squares.

Moreover,

$$
\begin{aligned}
& \left(x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}\right)\left(\mathbf{x}^{2}+\mathbf{z}^{\mathbf{2}}\right)= \\
& \quad\left(z^{4}-x^{2} y^{2}\right)^{2}+\left(x y z^{2}-x^{3} y\right)^{2}+\left(x z^{3}-x y^{2} z\right)^{2}
\end{aligned}
$$

[Kaltofen,Li,Yang,Zhi JSC 2012]

Semidefinite Programming: Block Form

$A^{[i, j]}, C^{[j]}, W^{[j]}$ are real symmetric matrix blocks
$W=$ block diagonal $\left(W^{[1]}, \ldots, W^{[k]}\right)$

$$
\begin{array}{ll}
\min _{W^{[1]}, \ldots, W^{[k]}} & C^{[1]} \bullet W^{[1]}+\cdots+C^{[k]} \bullet W^{[k]} \\
\text { s. t. } & {\left[\begin{array}{c}
A^{[1,1]} \bullet W^{[1]}+\cdots+A^{[1, k]} \bullet W^{[k]} \\
\vdots \\
A^{[m, 1]} \bullet W^{[1]}+\cdots+A^{[m, k]} \bullet W^{[k]}
\end{array}\right]=b \in \mathbb{R}^{m},}
\end{array}
$$

$$
W^{[j]} \succeq 0, W^{[j]}=\left(W^{[j]}\right)^{T}, j=1, \ldots, k
$$

Semidefinite Programming: Block Form

$A^{[i, j]}, C^{[j]}, W^{[j]}$ are real symmetric matrix blocks
$W=$ block diagonal $\left(W^{[1]}, \ldots, W^{[k]}\right)$

$$
\begin{array}{ll}
\min _{W^{[1]}, \ldots, W^{[k]}} & C^{[1]} \bullet W^{[1]}+\cdots+C^{[k]} \bullet W^{[k]} \\
\text { s. t. } & {\left[\begin{array}{c}
A^{[1,1]} \bullet W^{[1]}+\cdots+A^{[1, k]} \bullet W^{[k]} \\
\vdots \\
A^{[m, 1]} \bullet W^{[1]}+\cdots+A^{[m, k]} \bullet W^{[k]}
\end{array}\right]=b \in \mathbb{R}^{m},}
\end{array}
$$

$$
W^{[j]} \succeq 0, W^{[j]}=\left(W^{[j]}\right)^{T}, j=1, \ldots, k
$$

Note: the Hilbert-Artin form $f \times\left(m_{e}^{T} W^{[2]} m_{e}\right)=m_{d}^{T} W^{[1]} m_{d}$ is a feasible solution for $k=2$; (pure) SOS polynomial has $k=1$.

Semidefinite Programming: Block Form

$A^{[i, j]}, C^{[j]}, W^{[j]}$ are real symmetric matrix blocks
$W=$ block diagonal $\left(W^{[1]}, \ldots, W^{[k]}\right)$

$$
\begin{array}{ll}
\min _{W^{[1]}, \ldots, W^{[k]}} & C^{[1]} \bullet W^{[1]}+\cdots+C^{[k]} \bullet W^{[k]} \\
\text { s. t. } & {\left[\begin{array}{c}
A^{[1,1]} \bullet W^{[1]}+\cdots+A^{[1, k]} \bullet W^{[k]} \\
\vdots \\
A^{[m, 1]} \bullet W^{[1]}+\cdots+A^{[m, k]} \bullet W^{[k]}
\end{array}\right]=b \in \mathbb{R}^{m}}
\end{array}
$$

$$
W^{[j]} \succeq 0, W^{[j]}=\left(W^{[j]}\right)^{T}, j=1, \ldots, k
$$

Note: the Hilbert-Artin form $f \times\left(m_{e}^{T} W^{[2]} m_{e}\right)=m_{d}^{T} W^{[1]} m_{d}$ is a feasible solution for $k=2$; (pure) SOS polynomial has $k=1$.

Software: SeDuMi, YALMIP, SOSTOOLS, SparsePOP, SDPT3,

Exact Certification of Optima via Rational SOS

Problems with sum-of-squares certificates:

- Numerical sum-of-squares yields " $\geq \mathbf{0}$ " approximately!
- Exact optimum is high-degree/large-height algebraic number.

Exact Certification of Optima via Rational SOS

Problems with sum-of-squares certificates:

- Numerical sum-of-squares yields " $\geq \mathbf{0}$ " approximately!
- Exact optimum is high-degree/large-height algebraic number.

We certify a rational lower bound $r \lesssim r^{*}=\inf _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})$ (of small size) via a rational matrix W so that the following conditions hold exactly:

$$
\begin{aligned}
& f(\mathbf{X})-r=m_{d}(\mathbf{X})^{T} \cdot W \cdot m_{d}(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{aligned}
$$

Rationalizing Sum-Of-Squares: "Easy Case" $W \succ 0$
[Harrison'07; Peyrl, Parrilo'07, '08; Kaltofen, Li, Yang, Zhi,'08,'09]

affine linear hyperplane is given by

$$
\mathscr{X}=\left\{A \mid A^{T}=A, f(\mathbf{X})-r=m_{d}(\mathbf{X})^{T} \cdot A \cdot m_{d}(\mathbf{X})\right\}
$$

Rationalizing a Sum-Of-Squares: "Hard Case" $W \succeq 0$
[Kaltofen, Li, Yang, Zhi,'08,'09, Monniaux, Corbineau'11]

where the affine linear hyperplane is tangent to the cone boundary of singular W : real optimizers, fewer squares, missing terms

Rationalizing a Sum-Of-Squares

From "Hard Case" to "Easy Case":

- Reducing the dimension of W by removing extra monomials.

Rationalizing a Sum-Of-Squares

From "Hard Case" to "Easy Case":

- Reducing the dimension of W by removing extra monomials.
- Computing the minimal number of squares by matrix completion method.

Rationalizing a Sum-Of-Squares

From "Hard Case" to "Easy Case":

- Reducing the dimension of W by removing extra monomials.
- Computing the minimal number of squares by matrix completion method.
- Computing a hyperplane $\mathscr{X} \subset \mathbb{R}^{N}$ such that

$$
\mathfrak{S}(W)=\left\{\mathbf{x} \in \mathbb{R}^{N} \mid W(\mathbf{x}) \succeq 0\right\} \subset \mathscr{X}
$$

Rationalizing a Sum-Of-Squares

From "Hard Case" to "Easy Case":

- Reducing the dimension of W by removing extra monomials.

Siegfried Rump's 2006 Model Problem

For $n=1,2,3, \ldots$ compute the global minimum μ_{n} :

$$
\begin{aligned}
\mu_{n}= & \min _{P, Q} \frac{\|P Q\|_{2}^{2}}{\|P\|_{2}^{2}\|Q\|_{2}^{2}} \\
& \text { s. t. } P(Z)=\sum_{i=1}^{n} p_{i} Z^{i-1}, Q(Z)=\sum_{i=1}^{n} q_{i} Z^{i-1} \in \mathbb{R}[Z] \backslash\{0\}
\end{aligned}
$$

Siegfried Rump's 2006 Model Problem

For $n=1,2,3, \ldots$ compute the global minimum μ_{n} :

$$
\begin{aligned}
\mu_{n}= & \min _{P, Q} \frac{\|P Q\|_{2}^{2}}{\|P\|_{2}^{2}\|Q\|_{2}^{2}} \\
& \text { s. t. } P(Z)=\sum_{i=1}^{n} p_{i} Z^{i-1}, Q(Z)=\sum_{i=1}^{n} q_{i} Z^{i-1} \in \mathbb{R}[Z] \backslash\{0\}
\end{aligned}
$$

- $n \leq 8$ using Gröbner bases by Mohab Safey El Din.
- $n \leq 8$ using COSY package by Kyoko Makino.
- $n \leq 12$ using SOSTOOLS and INTLAB by Siegfried Rump.

Siegfried Rump's 2006 Model Problem
Let $f(\mathbf{X})=\|P Q\|_{2}^{2}, g(\mathbf{X})=\|P\|_{2}^{2}\|Q\|_{2}^{2}$,

$$
\begin{aligned}
\mu_{n}^{\star}:= & \sup _{r \in \mathbb{R}, W} r \\
\text { s. t. } & f(\mathbf{X})-r g(\mathbf{X})=m_{d}(\mathbf{X})^{T} \cdot W \cdot m_{d}(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{aligned}
$$

Siegfried Rump's 2006 Model Problem
Let $f(\mathbf{X})=\|P Q\|_{2}^{2}, g(\mathbf{X})=\|P\|_{2}^{2}\|Q\|_{2}^{2}$,

$$
\left.\begin{array}{rl}
\mu_{n}^{\star}:= & \sup _{r \in \mathbb{R}, W} r \\
\text { s. t. } & f(\mathbf{X})-r g(\mathbf{X})=m_{d}(\mathbf{X})^{T} \cdot W \cdot m_{d}(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{array}\right\}
$$

- $\mathbf{X}=\left\{p_{1}, \ldots, p_{\lceil n / 2\rceil}\right\} \cup\left\{q_{1}, \ldots, q_{\lceil n / 2\rceil}\right\}$, because P, Q achieving μ_{n} must be symmetric or skew-symmetric. [Rump and Sekigawa'06]

Siegfried Rump's 2006 Model Problem
Let $f(\mathbf{X})=\|P Q\|_{2}^{2}, g(\mathbf{X})=\|P\|_{2}^{2}\|Q\|_{2}^{2}$,

$$
\left.\begin{array}{rl}
\mu_{n}^{\star}:= & \sup _{r \in \mathbb{R}, W} \\
& r \\
& \text { s. t. } \\
& f(\mathbf{X})-\operatorname{rg}(\mathbf{X})=m_{d}(\mathbf{X})^{T} \cdot W \cdot m_{d}(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{array}\right\}
$$

- $\mathbf{X}=\left\{p_{1}, \ldots, p_{\lceil n / 2\rceil}\right\} \cup\left\{q_{1}, \ldots, q_{\lceil n / 2\rceil}\right\}$, because P, Q achieving μ_{n} must be symmetric or skew-symmetric. [Rump and Sekigawa'06]
- [Kaltofen, Li, Yang, Zhi'08].
- $m_{d}(\mathbf{X})$ is a monomial vector restricted to $p_{i} q_{j}$.

Siegfried Rump's 2006 Model Problem
Let $f(\mathbf{X})=\|P Q\|_{2}^{2}, g(\mathbf{X})=\|P\|_{2}^{2}\|Q\|_{2}^{2}$,

$$
\begin{aligned}
\mu_{n}^{\star}:= & \sup _{r \in \mathbb{R}, W} r \\
\text { s. t. } & f(\mathbf{X})-r g(\mathbf{X})=m_{d}(\mathbf{X})^{T} \cdot W \cdot m_{d}(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{aligned}
$$

- $\mathbf{X}=\left\{p_{1}, \ldots, p_{\lceil n / 2\rceil}\right\} \cup\left\{q_{1}, \ldots, q_{\lceil n / 2\rceil}\right\}$, because P, Q achieving μ_{n} must be symmetric or skew-symmetric. [Rump and Sekigawa'06]
- [Kaltofen, Li, Yang, Zhi'08].
- $m_{d}(\mathbf{X})$ is a monomial vector restricted to $p_{i} q_{j}$.
- Exact W has corank 1 when n is even and corank 2 when n is odd.

Siegfried Rump's 2006 Model Problem
Let $f(\mathbf{X})=\|P Q\|_{2}^{2}, g(\mathbf{X})=\|P\|_{2}^{2}\|Q\|_{2}^{2}$,

$$
\begin{aligned}
\mu_{n}^{\star}:= & \sup _{r \in \mathbb{R}, W} r \\
\text { s. t. } & f(\mathbf{X})-r g(\mathbf{X})=m_{d}(\mathbf{X})^{T} \cdot W \cdot m_{d}(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{aligned}
$$

- $\mathbf{X}=\left\{p_{1}, \ldots, p_{\lceil n / 2\rceil}\right\} \cup\left\{q_{1}, \ldots, q_{\lceil n / 2\rceil}\right\}$, because P, Q achieving μ_{n} must be symmetric or skew-symmetric. [Rump and Sekigawa'06]
- [Kaltofen, Li, Yang, Zhi'08].
- $m_{d}(\mathbf{X})$ is a monomial vector restricted to $p_{i} q_{j}$.
- Exact W has corank 1 when n is even and corank 2 when n is odd.
- Certify a slightly perturbed lower bound with a W of full rank.

Certified Lower Bounds by Multiple Precision SDP

[Kaltofen,Li,Yang,Zhi'12, Guo'10]

n	k	$\#$ iter	prec.	secs/iter	lower bound r_{n}	upper bound
4	2	50	4×15	0.71	0.01742917332143265288	0.01742917332143265289
5	1	50	4×15	2.03	0.00233959554815559112	0.00233959554815559113
6	2	50	4×15	1.76	0.00028973187527968192	0.00028973187527968193
7	1	75	5×15	11.36	0.00003418506980008284	0.00003418506980008285
8	2	75	5×15	12.49	0.00000390543564975572	0.00000390543564975573
9	1	75	5×15	84.12	$0.43600165391810484613 \mathrm{e}-06$	$0.43600165391810484613 \mathrm{e}-06$
10	2	75	5×15	92.79	$0.47839395687709759327 \mathrm{e}-07$	$0.47839395687709759327 \mathrm{e}-07$
11	1	85	5×15	622.03	$0.51787490974469905331 \mathrm{e}-08$	$0.51787490974469905331 \mathrm{e}-08$
12	2	85	5×15	634.48	$0.55458818311631347611 \mathrm{e}-09$	$0.55458818311631347612 \mathrm{e}-09$
13	1	100	5×15	3800.0	$0.58866880811866093130 \mathrm{e}-10$	$0.58866880811866093130 \mathrm{e}-10$
14	2	100	5×15	3800.00	$0.62024449920539050219 \mathrm{e}-11$	$0.62024449920539050220 \mathrm{e}-11$
15	1	120	6×15	15000.00	$0.64943654185809512880 \mathrm{e}-12$	$0.64943654185809512880 \mathrm{e}-12$
16	2	120	6×15	23000.00	$0.67636042558221379057 \mathrm{e}-13$	$0.67636042558221379058 \mathrm{e}-13$
17	1	70	6×15	72400.00	$0.70112631896355325150 \mathrm{e}-14$	$0.70112631970143741585 \mathrm{e}-14$
18	2	50	6×15	95720.00	$0.71154604865069396988 \mathrm{e}-15$	$0.72383944796943875862 \mathrm{e}-15$

Rationalizing a Sum-Of-Squares

From "Hard Case" to "Easy Case":

- Reducing the dimension of W by removing extra monomials.
- Computing the minimal number of squares by matrix completion method.

Example: Voronoi2 [Everett,Lazard,Lazard,Safey El Din'07]

Voronoi2 (a, α, β, X, Y) has 253 monomials

$$
a^{12} \alpha^{6}+a^{12} \alpha^{4}-4 a^{11} \alpha^{5} Y+10 a^{11} \alpha^{4} \beta X+\underbrace{\cdots}_{248 \text { terms }}+20 a^{10} \alpha^{2} X^{2} .
$$

- The singular values of the computed Gram matrix $W_{118 \times 118}$:

$$
196,152.78,152.29,107.36,68.64,61.48,43.05,42.58,25.06, \cdots
$$

- Compute the truncated Cholesky decomposition of $W \approx \hat{L} \hat{L}^{T}$ w.r.t. tolerance 43 and obtain

$$
\begin{equation*}
\text { Voronoi } 2 \approx \mathbf{g}_{1}^{2}+\mathbf{g}_{2}^{2}+\cdots+\mathbf{g}_{7}^{2} \tag{*}
\end{equation*}
$$

Example: Voronoi2 [Everett,Lazard,Lazard,Safey El Din'07]

Voronoi2 (a, α, β, X, Y) has 253 monomials

$$
a^{12} \alpha^{6}+a^{12} \alpha^{4}-4 a^{11} \alpha^{5} Y+10 a^{11} \alpha^{4} \beta X+\underbrace{\cdots}_{248 \text { terms }}+20 a^{10} \alpha^{2} X^{2} .
$$

- The singular values of the computed Gram matrix $W_{118 \times 118}$:

$$
196,152.78,152.29,107.36,68.64,61.48,43.05,42.58,25.06, \cdots
$$

- Compute the truncated Cholesky decomposition of $W \approx \hat{L} \hat{L}^{T}$ w.r.t. tolerance 43 and obtain

$$
\begin{equation*}
\text { Voronoi2 } \approx \mathbf{g}_{1}^{2}+\mathbf{g}_{2}^{2}+\cdots+\mathbf{g}_{7}^{2} \tag{*}
\end{equation*}
$$

- Apply Gauss-Newton iterations to refine (*), after 30 iterations, we truncate $\tilde{L} \tilde{L}^{T}$ to an integer matrix $W=L D L^{T}$:

$$
\text { Voronoi2 }=\mathbf{f}_{1}^{2}+\frac{\mathbf{1}}{16} \mathbf{f}_{\mathbf{2}}^{\mathbf{2}}+\mathbf{f}_{3}^{2}+\frac{\mathbf{1}}{\mathbf{2 8}} \mathbf{f}_{4}^{2}+\frac{\mathbf{7}}{\mathbf{2 7}} \mathbf{f}_{5}^{2}
$$

where $f_{i} \in \mathbb{Q}[a, \alpha, \beta, X, Y]$.

Sum of Minimal Number of Squares

Represent $f\left(X_{1}, \ldots, X_{n}\right)$ as a sum of minimal number of squares of polynomials in $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$
\exists minimal number of $u_{i}: f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{\min }{ }_{i} u_{i}\left(X_{1}, \ldots, X_{n}\right)^{2}$
§
$\exists W \succeq 0$ of minimal rank: $f=m_{d}\left(X_{1}, \ldots, X_{n}\right)^{T} \cdot W \cdot m_{d}\left(X_{1}, \ldots, X_{n}\right)$

$$
=\sum_{i=1}^{\min }\left(\sqrt{D_{i, i}} L_{i} \cdot m_{d}\left(X_{1}, \ldots, X_{n}\right)\right)^{2}
$$

Represent $f\left(X_{1}, \ldots, X_{n}\right)$ as a sum of minimal number of squares of

 polynomials in $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$$\exists$ minimal number of $u_{i}: f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{\min }{ }_{i} u_{i}\left(X_{1}, \ldots, X_{n}\right)^{2}$
§
$\exists W \succeq 0$ of minimal rank: $f=m_{d}\left(X_{1}, \ldots, X_{n}\right)^{T} \cdot W \cdot m_{d}\left(X_{1}, \ldots, X_{n}\right)$

$$
=\sum_{i=1}^{\min }\left(\sqrt{D_{i, i}} L_{i} \cdot m_{d}\left(X_{1}, \ldots, X_{n}\right)\right)^{2}
$$

Note: SDP solvers based on interior point method return matrices with maximum rank [Klerk, Roos and Terlaky'97].

Low-rank Gram Matrix Completion Problem

Find a Gram matrix of the lowest rank satisfying $f=m_{d}(\mathbf{X})^{T} W m_{d}(\mathbf{X})$

Rank Minimization:

$$
\begin{array}{ll}
\min & \operatorname{rank}(W) \\
\text { s. t. } & \mathbb{A}(W)=b \\
& W \succeq 0, W^{T}=W
\end{array}
$$

Nuclear Norm Minimization:

$$
\begin{array}{ll}
\min & \|W\|_{*} \\
\text { s. t. } & \mathbb{A}(W)=b \\
& W \succeq 0, W^{T}=W
\end{array}
$$

- $\mathbb{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}, b \in \mathbb{R}^{m}$.
- $\|W\|_{*}=\Sigma_{i} \sigma_{i}, \sigma_{i}=i$-th singular value of the matrix W. When $W \succeq 0,\|W\|_{*}=\Sigma_{i} \lambda_{i}=\operatorname{Tr}(W), \lambda=i$-th eigenvalue of W.

Why is the Nuclear Norm Relevant?

- Bad nonconvex problem \Longrightarrow Convex problem!
- Nuclear norm is the "best" convex approximation of the rank function. [Fazel's PhD thesis'02]
- [Parrilo'10]

rank

nuclear norm

Nuclear Norm Regularized Least Squares

Nuclear norm minimization:

$$
\begin{array}{ll}
\min & \|W\|_{*} \\
\text { s. t. } & \mathbb{A}(W)=b \\
& W \succeq 0, W^{T}=W
\end{array}
$$

The constraints $\mathbb{A}(W)=b$ can be relaxed, resulting the nuclear norm regularized LS problem

$$
\min _{W \in \mathbb{S}_{+}^{n}} \mu\|W\|_{*}+\frac{1}{2}\|\mathbb{A}(W)-b\|_{2}^{2}
$$

where \mathbb{S}_{+}^{n} is the set of symmetric positive semidefinite matrices and $\mu>0$ is a given parameter.

Modified Fixed Point Iterative Method

Starting with $X^{0}=0$, inductively define for $k=1,2, \ldots$

$$
\left\{\begin{aligned}
Z^{k} & =X^{k}+\frac{t_{k-1}-1}{t_{k}}\left(X^{k}-X^{k-1}\right) \\
Y^{k} & =Z^{k}-\tau_{k} \mathbb{A}^{*}\left(\mathbb{A}\left(Z^{k}\right)-b\right) \\
X^{k+1} & =\mathscr{T}_{\tau \mu}\left(Y^{k}\right) \\
t_{k+1} & =\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}
\end{aligned}\right.
$$

where $\mathbb{A}^{*}: \mathbb{R}^{m} \rightarrow \mathbb{S}^{n}$ is the adjoint of \mathbb{A} and $\tau, \mu>0$.
Matrix Thresholding Operator: Assume $W=Q \cdot \Lambda \cdot Q^{T}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. For any $v \geq 0$,

$$
\mathscr{T}_{v}(W):=Q \cdot \operatorname{diag}\left(\left\{\lambda_{i}-v\right\}_{+}\right) \cdot Q^{T},
$$

where $t_{+}=\max (t, 0)$.

Modified Fixed Point Iterative Method

Starting with $X^{0}=0$, inductively define for $k=1,2, \ldots$

$$
\left\{\begin{aligned}
Z^{k} & =X^{k}+\frac{t_{k-1}-1}{t_{k}}\left(X^{k}-X^{k-1}\right) \\
Y^{k} & =Z^{k}-\tau_{k} \mathbb{A}^{*}\left(\mathbb{A}\left(Z^{k}\right)-b\right) \\
X^{k+1} & =\mathscr{T}_{\tau \mu}\left(Y^{k}\right) \\
t_{k+1} & =\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}
\end{aligned}\right.
$$

where $\mathbb{A}^{*}: \mathbb{R}^{m} \rightarrow \mathbb{S}^{n}$ is the adjoint of \mathbb{A} and $\tau, \mu>0$.
Matrix Thresholding Operator: Assume $W=Q \cdot \Lambda \cdot Q^{T}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. For any $v \geq 0$,

$$
\mathscr{T}_{v}(W):=Q \cdot \operatorname{diag}\left(\left\{\lambda_{i}-v\right\}_{+}\right) \cdot Q^{T},
$$

where $t_{+}=\max (t, 0)$.
We only compute eigenvalues which are larger than $\tau \mu$.

Exact SOS certificates: $m_{d}(x)$ is dense

Examples				Results					Gauss-Newton iteration	
n / r	p	$F R$	solvers	rank	θ	time (s)	rank	θ	time (s)	
$200 / 5$	1221	0.81	AFPC-BB	14	$3.63 \mathrm{e}+0$	$1.07 \mathrm{e}+1$	5	$6.95 \mathrm{e}-10$	$4.02 \mathrm{e}+2$	
			SDPNAL	21	$2.83 \mathrm{e}+0$	$1.06 \mathrm{e}+1$	5	$6.91 \mathrm{e}-10$	$5.57 \mathrm{e}+2$	
			SeDuMi	200	$2.58 \mathrm{e}-1$	$5.56 \mathrm{e}+1$	5	$7.18 \mathrm{e}-10$	$1.10 \mathrm{e}+3$	
$300 / 5$	1932	0.77	AFPC-BB	14	$2.23 \mathrm{e}+1$	$2.32 \mathrm{e}+1$	5	$1.38 \mathrm{e}-9$	$5.61 \mathrm{e}+2$	
			SDPNAL	25	$2.51 \mathrm{e}+0$	$2.69 \mathrm{e}+1$	5	$1.08 \mathrm{e}-9$	$7.05 \mathrm{e}+2$	
			SeDuMi	300	$4.75 \mathrm{e}-1$	$2.62 \mathrm{e}+2$	5	$1.13 \mathrm{e}-9$	$6.89 \mathrm{e}+2$	
$400 / 5$	2610	0.76	AFPC-BB	15	$1.25 \mathrm{e}+1$	$6.23 \mathrm{e}+1$	5	$5.83 \mathrm{e}-7$	$1.22 \mathrm{e}+3$	
			SDPNAL	27	$2.09 \mathrm{e}+0$	$8.69 \mathrm{e}+1$	5	$2.34 \mathrm{e}-8$	$5.03 \mathrm{e}+3$	
			SeDuMi	399	$3.38 \mathrm{e}-1$	$4.88 \mathrm{e}+2$	5	$4.39 \mathrm{e}-8$	$5.03 \mathrm{e}+3$	
$500 / 5$	5124	0.48	AFPC-BB	17	$2.48 \mathrm{e}+1$	$5.33 \mathrm{e}+1$	5	$1.48 \mathrm{e}-5$	$7.92 \mathrm{e}+3$	
			SDPNAL	38	$6.33 \mathrm{e}+0$	$2.53 \mathrm{e}+2$	5	$4.91 \mathrm{e}-8$	$1.84 \mathrm{e}+4$	
			SeDuMi	-	-	-	-	-	-	

SDPNAL: [Zhao,Sun,Toh'10]; SeDuMi: [Sturm'99, Löfberg'04]; n the dimension, r the rank, p the number of linear constrains; $F R=r(2 n-r+1) / 2 p$ degrees of freedom ratio;
$\theta=\left\|f(x)-m_{d}(x)^{T} \cdot W \cdot m_{d}(x)\right\|_{2}$ the error.

Exact SOS certificates: $m_{d}(\mathbf{X})$ is sparse

Problems				AFPC-BB			SDPNAL		
n	r	p	$F R$	rank	θ	time (s)	rank	θ	time (s)
500	20	24240	0.40	20	$1.50 \mathrm{e}+1$	$4.48 \mathrm{e}+1$	113	$4.23 \mathrm{e}+1$	$6.72 \mathrm{e}+2$
1000	10	27101	0.36	10	$2.21 \mathrm{e}+1$	$3.70 \mathrm{e}+2$	99	$8.80 \mathrm{e}+1$	$2.70 \mathrm{e}+3$
1000	50	95367	0.51	50	$1.01 \mathrm{e}+1$	$6.56 \mathrm{e}+2$	218	$9.20 \mathrm{e}+1$	$9.92 \mathrm{e}+3$
1500	10	45599	0.32	10	$3.31 \mathrm{e}+1$	$1.00 \mathrm{e}+3$	121	$3.41 \mathrm{e}+1$	$3.72 \mathrm{e}+4$
1500	50	122742	0.60	50	$1.51 \mathrm{e}+1$	$3.84 \mathrm{e}+3$	226	$3.79 \mathrm{e}+1$	$1.36 \mathrm{e}+4$

For the problem with $n=1500, r=50, f$ has 122402 monomials

$$
f=498 w^{34} x^{4} z^{2}-160 w^{31} x^{3} y^{2} z^{3}+58 x^{6} z^{2}+\underbrace{\cdots}_{122399}
$$

We can recover the exact SOS certificate without G-N refinement.

Rationalizing a Sum-Of-Squares

From "Hard Case" to "Easy Case":

- Reducing the dimension of W by removing extra monomials.
- Computing the minimal number of squares by matrix completion method.
- Computing a hyperplane $\mathscr{X} \subset \mathbb{R}^{N}$ such that

$$
\mathfrak{S}(W)=\left\{\mathbf{x} \in \mathbb{R}^{N} \mid W(\mathbf{x}) \succeq 0\right\} \subset \mathscr{X}
$$

Certificates for Low Dimensionality of $\mathfrak{S}(\mathrm{W})$

- Let $W \in \mathbb{S}^{n}$, then $\mathfrak{S}(\mathrm{W})$ has an empty interior

$$
\Longleftrightarrow \exists \mathbf{u}_{1}, \ldots, \mathbf{u}_{s} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, s \leq n \text {, s.t. } \sum_{i=1}^{s} \mathbf{u}_{i}^{T} \cdot \mathrm{~W} \cdot \mathbf{u}_{i}=0
$$

Certificates for Low Dimensionality of $\mathfrak{S}(\mathrm{W})$

- Let $W \in \mathbb{S}^{n}$, then $\mathfrak{S}(W)$ has an empty interior

$$
\Longleftrightarrow \exists \mathbf{u}_{1}, \ldots, \mathbf{u}_{s} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, s \leq n, \text { s.t. } \sum_{i=1}^{s} \mathbf{u}_{i}^{T} \cdot \mathrm{~W} \cdot \mathbf{u}_{i}=0
$$

- Assume $u_{11} \neq 0$, let $\mathrm{P}=\left[\mathbf{u}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right]$,

$$
\mathrm{W}^{\prime}=\mathrm{P}^{T} \cdot \mathrm{~W} \cdot \mathrm{P}=\left[\begin{array}{cccc}
\mathscr{L}_{1} & \mathscr{L}_{2} & \cdots & \mathscr{L}_{n} \\
\mathscr{L}_{2} & & & \\
\vdots & & \widehat{\mathrm{~W}} & \\
\mathscr{L}_{n} & & &
\end{array}\right]
$$

Certificates for Low Dimensionality of $\mathfrak{S}(\mathrm{W})$

- Let $W \in \mathbb{S}^{n}$, then $\mathfrak{S}(W)$ has an empty interior

$$
\Longleftrightarrow \exists \mathbf{u}_{1}, \ldots, \mathbf{u}_{s} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, s \leq n \text {, s.t. } \sum_{i=1}^{s} \mathbf{u}_{i}^{T} \cdot \mathrm{~W} \cdot \mathbf{u}_{i}=0
$$

- Assume $u_{11} \neq 0$, let $\mathrm{P}=\left[\mathbf{u}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right]$,

$$
\mathrm{W}^{\prime}=\mathrm{P}^{T} \cdot \mathrm{~W} \cdot \mathrm{P}=\left[\begin{array}{cccc}
\mathscr{L}_{1} & \mathscr{L}_{2} & \cdots & \mathscr{L}_{n} \\
\mathscr{L}_{2} & & & \\
\vdots & & \widehat{\mathrm{~W}} & \\
\mathscr{L}_{n} & & &
\end{array}\right]
$$

- For any $\mathscr{L}_{i} \neq 0$, there exists $A \succeq 0$ s.t. $-\mathscr{L}_{i}^{2}=\operatorname{tr}(A W)$. Therefore

$$
\begin{gathered}
\left(a_{1}, \ldots, a_{k}\right) \in \mathfrak{S}(\mathrm{W}) \Longrightarrow \mathscr{L}_{i}\left(a_{1}, \ldots, a_{k}\right)=0 \\
\Longrightarrow \mathfrak{S}(\mathrm{~W}) \subset \mathscr{X}=\left\{\mathscr{L}_{1}, \ldots, \mathscr{L}_{n}\right\}
\end{gathered}
$$

[Klep,Schweighofer'13, Guo,Safey El Din,Zhi'13]

Infeasibility Certificates of SOS over $\mathbb{R}[\mathbf{X}]$
Given $y=\left(y_{\alpha}\right) \in \mathbb{R}^{\mathbb{N}^{n}}$, for $f=\sum_{\alpha} f_{\alpha} \mathbf{X}^{\alpha} \in \mathbb{R}[\mathbf{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, define

$$
L_{y}(f):=y^{T} \operatorname{vec}(f)=\sum_{\alpha} y_{\alpha} f_{\alpha}
$$

Infeasibility Certificates of SOS over $\mathbb{R}[\mathbf{X}]$

Given $y=\left(y_{\alpha}\right) \in \mathbb{R}^{\mathbb{N}^{n}}$, for $f=\sum_{\alpha} f_{\alpha} \mathbf{X}^{\alpha} \in \mathbb{R}[\mathbf{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, define

$$
L_{y}(f):=y^{T} \operatorname{vec}(f)=\sum_{\alpha} y_{\alpha} f_{\alpha} .
$$

Theorem

[Guo,Kaltofen,Zhi'12] The following are equivalent:

1. $f \notin \operatorname{SOS} / \operatorname{SOS}_{\operatorname{deg} \leq 2 e}=\left\{\sum u_{i}^{2} / \Sigma v_{j}^{2} \mid u_{i}, v_{j} \in \mathbb{R}[\mathbf{X}], \operatorname{deg} v_{j} \leq e\right\}$.
2. $\exists y^{\prime} \in \mathbb{Q}^{m}$, s.t. $\forall v, u \in \mathbb{R}[\mathbf{X}]$ with $\operatorname{deg} v \leq e, \operatorname{deg} u \leq e+(\operatorname{deg} f) / 2$, we have $L_{y^{\prime}}\left(u^{2}\right) \geq 0$ and $L_{y^{\prime}}\left(f v^{2}\right)<0$.

Infeasibility Certificates of SOS over $\mathbb{R}[\mathbf{X}]$

Given $y=\left(y_{\alpha}\right) \in \mathbb{R}^{\mathbb{N}^{n}}$, for $f=\sum_{\alpha} f_{\alpha} \mathbf{X}^{\alpha} \in \mathbb{R}[\mathbf{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, define

$$
L_{y}(f):=y^{T} \operatorname{vec}(f)=\sum_{\alpha} y_{\alpha} f_{\alpha} .
$$

Theorem

[Guo,Kaltofen,Zhi'12] The following are equivalent:

1. $f \notin \operatorname{SOS} / \operatorname{SOS}_{\operatorname{deg} \leq 2 e}=\left\{\sum u_{i}^{2} / \Sigma v_{j}^{2} \mid u_{i}, v_{j} \in \mathbb{R}[\mathbf{X}], \operatorname{deg} v_{j} \leq e\right\}$.
2. $\exists y^{\prime} \in \mathbb{Q}^{m}$, s.t. $\forall v, u \in \mathbb{R}[\mathbf{X}]$ with $\operatorname{deg} v \leq e, \operatorname{deg} u \leq e+(\operatorname{deg} f) / 2$, we have $L_{y^{\prime}}\left(u^{2}\right) \geq 0$ and $L_{y^{\prime}}\left(f v^{2}\right)<0$.

If $f=\sum u_{i}^{2} / \sum v_{j}^{2}$ with $\operatorname{deg} v_{j} \leq e$, then

$$
0 \leq L_{y^{\prime}}\left(\sum u_{i}^{2}\right)=\sum L_{y^{\prime}}\left(f v_{j}^{2}\right)<0
$$

which is a contradiction.

Infeasibility Certificates of SOS over $\mathbb{R}[\mathbf{X}]$

Given $y=\left(y_{\alpha}\right) \in \mathbb{R}^{\mathbb{N}^{n}}$, for $f=\sum_{\alpha} f_{\alpha} \mathbf{X}^{\alpha} \in \mathbb{R}[\mathbf{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, define

$$
L_{y}(f):=y^{T} \operatorname{vec}(f)=\sum_{\alpha} y_{\alpha} f_{\alpha} .
$$

Theorem

[Guo,Kaltofen,Zhi'12] The following are equivalent:

1. $f \notin S O S / \operatorname{SOS}_{\operatorname{deg} \leq 2 e}=\left\{\Sigma u_{i}^{2} / \Sigma v_{j}^{2} \mid u_{i}, v_{j} \in \mathbb{R}[\mathbf{X}], \operatorname{deg} v_{j} \leq e\right\}$.
2. $\exists y^{\prime} \in \mathbb{Q}^{m}$, s.t. $\forall v, u \in \mathbb{R}[\mathbf{X}]$ with $\operatorname{deg} v \leq e, \operatorname{deg} u \leq e+(\operatorname{deg} f) / 2$, we have $L_{y^{\prime}}\left(u^{2}\right) \geq 0$ and $L_{y^{\prime}}\left(f v^{2}\right)<0$.

If $f=\sum u_{i}^{2} / \sum v_{j}^{2}$ with $\operatorname{deg} v_{j} \leq e$, then

$$
0 \leq L_{y^{\prime}}\left(\sum u_{i}^{2}\right)=\sum L_{y^{\prime}}\left(f v_{j}^{2}\right)<0
$$

which is a contradiction.
A rational hyperplane $L_{y^{\prime}}$ can be obtained by numerical SDP solvers.

Infeasibility Certificates of SOS over $\mathbb{R}[\mathbf{X}]$

Given $y=\left(y_{\alpha}\right) \in \mathbb{R}^{\mathbb{N}^{n}}$, for $f=\sum_{\alpha} f_{\alpha} \mathbf{X}^{\alpha} \in \mathbb{R}[\mathbf{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, define

$$
L_{y}(f):=y^{T} \operatorname{vec}(f)=\sum_{\alpha} y_{\alpha} f_{\alpha} .
$$

Theorem

[Guo,Kaltofen,Zhi'12] The following are equivalent:

1. $f \notin S O S / \operatorname{SOS}_{\operatorname{deg} \leq 2 e}=\left\{\Sigma u_{i}^{2} / \Sigma v_{j}^{2} \mid u_{i}, v_{j} \in \mathbb{R}[\mathbf{X}], \operatorname{deg} v_{j} \leq e\right\}$.
2. $\exists y^{\prime} \in \mathbb{Q}^{m}$, s.t. $\forall v, u \in \mathbb{R}[\mathbf{X}]$ with $\operatorname{deg} v \leq e, \operatorname{deg} u \leq e+(\operatorname{deg} f) / 2$, we have $L_{y^{\prime}}\left(u^{2}\right) \geq 0$ and $L_{y^{\prime}}\left(f v^{2}\right)<0$.

If $f=\sum u_{i}^{2} / \sum v_{j}^{2}$ with $\operatorname{deg} v_{j} \leq e$, then

$$
0 \leq L_{y^{\prime}}\left(\sum u_{i}^{2}\right)=\sum L_{y^{\prime}}\left(f v_{j}^{2}\right)<0
$$

which is a contradiction.
A rational hyperplane $L_{y^{\prime}}$ can be obtained by numerical SDP solvers.
Special case: $e=0$ [Ahmadi and Parrilo'09]

Even Symmetric Sextics [Choi et al.1987]

Let $M_{r}(\mathbf{X})=\sum_{i=1}^{n} X_{i}^{r}$, for integer $0 \leq k \leq n-1$, we define forms $f_{n, k}$ by

$$
\left\{\begin{array}{l}
f_{n, 0}=-n M_{6}+(n+1) M_{2} M_{4}-M_{2}^{3}, \\
f_{n, k}=\left(k^{2}+k\right) M_{6}-(2 k+1) M_{2} M_{4}+M_{2}^{3}, 1 \leq k \leq n-1 .
\end{array}\right.
$$

For $n=4,5,6$, we can certify that the polynomials

$$
f_{4,2}, f_{5,2}, f_{6,2} \notin \mathrm{SOS} / \mathrm{SOS}_{\operatorname{deg} \leq 2}
$$

and

$$
f_{5,3}, f_{6,3}, f_{6,4} \notin \mathrm{SOS} / \mathrm{SOS}_{\operatorname{deg} \leq 4}
$$

To our knowledge, they are the first PSD polynomials which can not be written as $\sum_{i} u_{i}^{2} / \sum_{j} v_{j}^{2}$ with $\operatorname{deg} \sum_{j} v_{j}^{2}=4$!

An III-Posed Polynomial

Consider polynomial $f(X, Y)=X^{2}+Y^{2}-2 X Y=(X-Y)^{2}$.

$$
\forall \varepsilon>0, f_{\varepsilon}(X, Y)=\left(1-\varepsilon^{2}\right) X^{2}+Y^{2}-2 X Y
$$

is not SOS. Take $x=y=C, f_{\varepsilon}(x, y)=-\varepsilon^{2} C^{2} \Rightarrow \inf \mathbf{f}_{\varepsilon}=-\infty$. III-posed!

An III-Posed Polynomial

Consider polynomial $f(X, Y)=X^{2}+Y^{2}-2 X Y=(X-Y)^{2}$.

$$
\forall \varepsilon>0, f_{\varepsilon}(X, Y)=\left(1-\varepsilon^{2}\right) X^{2}+Y^{2}-2 X Y
$$

is not SOS. Take $x=y=C, f_{\varepsilon}(x, y)=-\varepsilon^{2} C^{2} \Rightarrow \inf \mathbf{f}_{\varepsilon}=-\infty$. III-posed!

- For $\varepsilon=10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}$, SDP solver SeDuMi in Matlab can numerically detect f_{ε} is not SOS. But for $\varepsilon=10^{-5}$ or smaller, it fails!

An III-Posed Polynomial

Consider polynomial $f(X, Y)=X^{2}+Y^{2}-2 X Y=(X-Y)^{2}$.

$$
\forall \varepsilon>0, f_{\varepsilon}(X, Y)=\left(1-\varepsilon^{2}\right) X^{2}+Y^{2}-2 X Y
$$

is not SOS. Take $x=y=C, f_{\varepsilon}(x, y)=-\varepsilon^{2} C^{2} \Rightarrow \inf \mathbf{f}_{\varepsilon}=-\infty$. III-posed!

- For $\varepsilon=10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}$, SDP solver SeDuMi in Matlab can numerically detect f_{ε} is not SOS. But for $\varepsilon=10^{-5}$ or smaller, it fails!
- Our method in Maple can give exact certificate of f_{ε} being not SOS for $\varepsilon=10^{-8}$ or smaller!
[Guo,Kaltofen,Zhi'12]

Infeasibility Certificates of SOS over $\mathbb{Q}[\mathbf{X}]$

Sturmfels' question

Let $f \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{n}\right]$ s.t. $f=g_{1}^{2}+\cdots+g_{s}^{2}$ (with $g_{i} \in \mathbb{R}\left[Y_{1}, \ldots, Y_{n}\right]$). Do there exist $h_{1}, \ldots, h_{p} \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{n}\right]$ s.t. $f=h_{1}^{2}+\cdots+h_{p}^{2}$?

Infeasibility Certificates of SOS over $\mathbb{Q}[\mathbf{X}]$

Sturmfels' question

Let $f \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{n}\right]$ s.t. $f=g_{1}^{2}+\cdots+g_{s}^{2}$ (with $g_{i} \in \mathbb{R}\left[Y_{1}, \ldots, Y_{n}\right]$). Do there exist $h_{1}, \ldots, h_{p} \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{n}\right]$ s.t. $f=h_{1}^{2}+\cdots+h_{p}^{2}$?

Scheiderer's counter example to Sturmfels' question (2012):

$$
f=x^{4}+x y^{3}+y^{4}-3 x^{2} y z-4 x y^{2} z+2 x^{2} z^{2}+x z^{3}+y z^{3}+z^{4}
$$

has only SOS decompositions over the reals:

$$
\begin{aligned}
f= & \left(x^{2}+y^{2} \alpha-\frac{y z}{2}+\frac{1}{4} \frac{z^{2}(1+4 \alpha)}{\alpha}\right)^{2} \\
& -2 \alpha\left(x y-\frac{1}{4} \frac{y^{2}}{\alpha}+\frac{1}{2} \frac{x z}{\alpha}+y z \alpha-\frac{z^{2}}{2}\right)^{2},
\end{aligned}
$$

where α is a negative real number satisfies $-1-8 \alpha+8 \alpha^{3}=0$.

Scheiderer's Counter Example
Suppose

$$
f=\left[x^{2}, x y, y^{2}, x z, y z, z^{2}\right] \cdot \mathrm{W} \cdot\left[x^{2}, x y, y^{2}, x z, y z, z^{2}\right]^{T},
$$

the Gram matrix W of f is a 6×6 symmetric matrix

$$
\mathrm{W}=\left[\begin{array}{cccccc}
1 & 0 & X_{1} & 0 & -\frac{3}{2}-X_{2} & X_{3} \\
0 & -2 X_{1} & \frac{1}{2} & X_{2} & -2-X_{4} & -X_{5} \\
X_{1} & \frac{1}{2} & 1 & X_{4} & 0 & X_{6} \\
0 & X_{2} & X_{4} & -2 X_{3}+2 & X_{5} & \frac{1}{2} \\
-\frac{3}{2}-X_{2} & -2-X_{4} & 0 & X_{5} & -2 X_{6} & \frac{1}{2} \\
X_{3} & -X_{5} & X_{6} & \frac{1}{2} & \frac{1}{2} & 1
\end{array}\right]
$$

We have $\mathfrak{S}(W)=\left\{\mathbf{x} \in \mathbb{R}^{6} \mid W(\mathbf{x}) \succeq 0\right\} \neq \emptyset$ but $\mathfrak{S}(W) \cap \mathbb{Q}^{6}=\emptyset$.

Find rational points in $\mathfrak{S}(W)$ [Guo,Safey El Din,Zhi'13]

Consider $\mathrm{W}=\mathrm{W}_{0}+X_{1} \mathrm{~W}_{1}+\cdots+X_{k} \mathrm{~W}_{k} \succeq 0, \mathrm{~W}_{0}, \ldots, \mathrm{~W}_{k}$ are $(D \times D)$ symmetric matrices with entries in \mathbb{Q} of bit size $\leq \tau$.
 operations.

- Return rational points in $\mathfrak{S}(\mathrm{W})$ whose coordinates have bit length $\leq \tau^{\mathrm{O}(1)} 2^{\mathrm{O}\left(\min (k, \mathrm{D}) \mathrm{D}^{2}\right)}$.

Find rational points in $\mathfrak{S}(\mathrm{W})$ [Guo,Safey El Din,Zhi'13]
Consider $\mathrm{W}=\mathrm{W}_{0}+X_{1} \mathrm{~W}_{1}+\cdots+X_{k} \mathrm{~W}_{k} \succeq 0, \mathrm{~W}_{0}, \ldots, \mathrm{~W}_{k}$ are $(D \times D)$ symmetric matrices with entries in \mathbb{Q} of bit size $\leq \tau$.
 operations.

- Return rational points in $\mathfrak{S}(\mathrm{W})$ whose coordinates have bit length $\leq \tau^{\mathbf{O}(\mathbf{1})} \mathbf{2}^{\mathbf{O}\left(\min (\mathbf{k}, \mathbf{D}) \mathbf{D}^{2}\right)}$.

Certificates for SOS decompositions over \mathbb{Q} [Guo,Safey El Din,Zhi'13]
Let $f \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{n}\right]$ with coefficients of bit size $\leq \tau$ and $\operatorname{deg}(f)=2 d$.

- Decide if $f=\sum f_{i}^{2}, f_{i} \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{n}\right]$ within $\tau^{\mathbf{O}(\mathbf{1})} \mathbf{2}^{\mathbf{O}\left(\mathrm{M}(\mathbf{d}, \mathbf{n})^{3}\right)}$ bit operations. $\left(\tau^{O(1)} \mathrm{M}(d, n)^{\mathrm{M}(d, n)^{6}}\right.$ in [Safey El Din,Zhi'10])
- The bit lengths of rational coefficients of the $f_{i}{ }^{\prime} \mathrm{s}: \tau^{\mathbf{O}(\mathbf{1})} \mathbf{2}^{\mathbf{O}\left(\mathrm{M}(\mathbf{d}, \mathbf{n})^{3}\right)}$.
- "Computer-validation" for Scheiderer's counter example.

Full Dimensional Case

Let $\mathrm{W}=\mathrm{W}_{0}+X_{1} \mathrm{~W}_{1}+\cdots+X_{k} \mathrm{~W}_{k}$ where $\mathrm{W}_{0}, \ldots, \mathrm{~W}_{k}$ are $(D \times D)$ symmetric matrices with entries in \mathbb{Q}.

- characteristic polynomial of W:
$y^{D}+m_{D-1} y^{D-1}+\cdots+m_{0}$
- $\Psi=\left\{(-1)^{(i+D)} m_{i}>0,0 \leq i \leq D-1\right\}$

Critical point method (Grigoriev, Vorobjov, Canny, Heintz, Solerno, Renegar, Basu, Pollack, Roy, Safey El Din)

Full Dimensional Case

$$
\text { Let } \mathrm{W}=\mathrm{W}_{0}+X_{1} \mathrm{~W}_{1}+\cdots+X_{k} \mathrm{~W}_{k} \text { where } \mathrm{W}_{0}, \ldots, \mathrm{~W}_{k}
$$

are $(D \times D)$ symmetric matrices with entries in \mathbb{Q}.

- characteristic polynomial of W:

$$
\begin{aligned}
& y^{D}+m_{D-1} y^{D-1}+\cdots+m_{0} \\
- & \Psi=\left\{(-1)^{(i+D)} m_{i}>0,0 \leq i \leq D-1\right\}
\end{aligned}
$$

Critical point method (Grigoriev, Vorobjov, Canny, Heintz, Solerno, Renegar, Basu, Pollack, Roy, Safey El Din)

Scheiderer's counter example

Ψ have 6 inequalities with 6 indeterminates, apply the routine HasRealSolutions in RAGLib (Safey El Din) to compute

$$
\mathscr{U}=\text { OpenDecision }(\Psi) .
$$

The set \mathscr{U} is empty $\Longrightarrow \mathfrak{S}(W)$ is not full dimensional.

Low Dimensional Case

Certificates for low dimensionality of $\mathfrak{S}(\mathrm{W})$ [Klep,Schweighofer'13]

- Assume $\mathfrak{S}(W)$ has an empty interior, $\exists \mathbf{u} \in \mathbb{R}^{D} \backslash\{0\}$ s.t. $W \cdot \mathbf{u}=\mathbf{0}$

$$
\Longleftrightarrow \exists \mathbf{u}_{1}, \ldots, \mathbf{u}_{s} \in \mathbb{R}^{D} \backslash\{\mathbf{0}\}, 1 \leq s \leq D, \text { s.t. } \sum_{i=1}^{s} \mathbf{u}_{i}^{T} \cdot \mathrm{~W} \cdot \mathbf{u}_{i}=0 .
$$

- Assume $u_{11} \neq 0$, let $\mathrm{P}=\left[\mathbf{u}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{D}}\right]$,

$$
\mathrm{W}^{\prime}=\mathrm{P}^{T} \cdot \mathrm{~W} \cdot \mathrm{P}=\left[\begin{array}{cccc}
\mathscr{L}_{1} & \mathscr{L}_{2} & \cdots & \mathscr{L}_{D} \\
\mathscr{L}_{2} & & & \\
\vdots & & \widehat{\mathrm{~W}} & \\
\mathscr{L}_{D} & & &
\end{array}\right], \mathscr{L}_{1}, \ldots, \mathscr{L}_{D} \in \mathbb{R}\left[X_{1}, \ldots, X_{k}\right],
$$

- $\left(a_{1}, \ldots, a_{k}\right) \in \mathfrak{S}(\mathrm{W}) \Longrightarrow \mathscr{L}_{i}\left(a_{1}, \ldots, a_{k}\right)=0, i=1, \ldots, D$.

Scheiderer's Counter Example (II)

- Using the routine RUR [Rouillier'99], we get a real algebraic vector

$$
\begin{gathered}
\mathbf{u}=\left[-1+\frac{1}{2} \vartheta+\frac{1}{2} \vartheta^{4}, \frac{\vartheta^{3}}{2}+\frac{1}{2}, \vartheta^{2},-2 \vartheta+\frac{1}{2} \vartheta^{2}+\frac{1}{2} \vartheta^{5}, \vartheta, 1\right]^{T} \\
\text { s.t. } \mathbf{u}^{T} \cdot \mathrm{~W} \cdot \mathbf{u}=0, \vartheta^{6}-4 \vartheta^{2}-1=0 .
\end{gathered}
$$

Scheiderer's Counter Example (II)

- Using the routine RUR [Rouillier'99], we get a real algebraic vector

$$
\begin{gathered}
\mathbf{u}=\left[-1+\frac{1}{2} \vartheta+\frac{1}{2} \vartheta^{4}, \frac{\vartheta^{3}}{2}+\frac{1}{2}, \vartheta^{2},-2 \vartheta+\frac{1}{2} \vartheta^{2}+\frac{1}{2} \vartheta^{5}, \vartheta, 1\right]^{T} \\
\text { s.t. } \mathbf{u}^{T} \cdot \mathrm{~W} \cdot \mathbf{u}=0, \vartheta^{6}-4 \vartheta^{2}-1=0 .
\end{gathered}
$$

- Construct $P=\left[\mathbf{u}, e_{2}, \ldots, e_{6}\right], W^{\prime}=P^{T} \cdot W \cdot P$, real linear forms $\mathscr{L}_{1}, \ldots, \mathscr{L}_{6}$ are the entries of the first column of W^{\prime} :

$$
\left[\begin{array}{c}
\mathscr{L}_{1} \\
\mathscr{L}_{2} \\
\mathscr{L}_{3} \\
\mathscr{L}_{4} \\
\mathscr{L}_{5} \\
\mathscr{L}_{6}
\end{array}\right]=\left[\begin{array}{rccc}
\frac{1}{2} X_{2} \vartheta^{5} & & 0 & \\
\frac{1}{2} X_{4} \vartheta^{5} & +\frac{1}{2} X_{1} \vartheta^{4} & +\ldots & -X_{1}-X_{5} \\
\left(1-X_{3}\right) \vartheta^{5} & & +\ldots & +\frac{1}{2}+\frac{1}{2} X_{2} \\
\frac{1}{2} X_{5} \vartheta^{5} & -\left(\frac{3}{4}+\frac{1}{2} X_{2}\right) \vartheta^{4} & +\ldots & +1+X_{2}-\frac{1}{2} X_{4} \\
\frac{1}{4} \vartheta^{5} & +\frac{1}{2} X_{3} \vartheta^{4} & +\ldots & -X_{3}+1-\frac{1}{2} X_{5}
\end{array}\right]
$$

Rational Linear Forms

Let $\mathscr{L}_{i}=l_{i, \delta-1}\left(X_{1}, \ldots, X_{k}\right) \vartheta^{\delta-1}+\cdots+l_{i, 0}\left(X_{1}, \ldots, X_{k}\right)$, we have

$$
\left\{\mathbf{x} \in \mathbb{Q}^{k} \mid \mathscr{L}_{i}(\mathbf{x})=0\right\} \neq \emptyset \Longleftrightarrow\left\{\mathbf{x} \in \mathbb{Q}^{k} \mid l_{i, 0}(\mathbf{x})=\ldots=l_{i, \delta-1}(\mathbf{x})=0\right\} \neq \emptyset
$$

Rational Linear Forms

Let $\mathscr{L}_{i}=l_{i, \delta-1}\left(X_{1}, \ldots, X_{k}\right) \vartheta^{\delta-1}+\cdots+l_{i, 0}\left(X_{1}, \ldots, X_{k}\right)$, we have

$$
\left\{\mathbf{x} \in \mathbb{Q}^{k} \mid \mathscr{L}_{i}(\mathbf{x})=0\right\} \neq \emptyset \Longleftrightarrow\left\{\mathbf{x} \in \mathbb{Q}^{k} \mid l_{i, 0}(\mathbf{x})=\ldots=l_{i, \delta-1}(\mathbf{x})=0\right\} \neq \emptyset
$$

[Guo,Safey El Din,Zhi'13]

- Set $L_{j}=\left[l_{1, j}, \ldots, l_{D, j}\right]^{T},\left[L_{0}, \ldots, L_{\delta-1}\right]=0$ has no solutions $\Longrightarrow \mathfrak{S}(\mathrm{W})$ has no rational solutions!
- Otherwise, apply Gaussian elimination, we obtain

$$
W^{\prime} \longrightarrow\left[\begin{array}{cc}
0 & 0 \\
0 & \widetilde{W}
\end{array}\right], \mathfrak{S}(\widetilde{W}) \cap \mathbb{Q}^{k^{\prime}}=\operatorname{proj}\left(\subseteq(\mathbb{W}) \cap \mathbb{Q}^{k}\right), k^{\prime} \leq k
$$

Rational Linear Forms

Let $\mathscr{L}_{i}=l_{i, \delta-1}\left(X_{1}, \ldots, X_{k}\right) \vartheta^{\delta-1}+\cdots+l_{i, 0}\left(X_{1}, \ldots, X_{k}\right)$, we have

$$
\left\{\mathbf{x} \in \mathbb{Q}^{k} \mid \mathscr{L}_{i}(\mathbf{x})=0\right\} \neq \emptyset \Longleftrightarrow\left\{\mathbf{x} \in \mathbb{Q}^{k} \mid l_{i, 0}(\mathbf{x})=\ldots=l_{i, \delta-1}(\mathbf{x})=0\right\} \neq \emptyset
$$

[Guo,Safey El Din,Zhi'13]

- Set $L_{j}=\left[l_{1, j}, \ldots, l_{D, j}\right]^{T},\left[L_{0}, \ldots, L_{\delta-1}\right]=0$ has no solutions $\Longrightarrow S(W)$ has no rational solutions!
- Otherwise, apply Gaussian elimination, we obtain

$$
W^{\prime} \longrightarrow\left[\begin{array}{cc}
0 & 0 \\
0 & \widetilde{W}
\end{array}\right], \mathfrak{S}(\widetilde{W}) \cap \mathbb{Q}^{k^{\prime}}=\operatorname{proj}\left(\mathfrak{S}(\mathbb{W}) \cap \mathbb{Q}^{k}\right), k^{\prime} \leq k
$$

A computer validation for Scheiderer's counter example
$L_{5}=\left[0, \frac{1}{2} X_{2}, \frac{1}{2} X_{4}, 1-X_{3}, \frac{1}{2} X_{5}, \frac{1}{4}\right]^{T}$,
$L_{5}=\mathbf{0}$ has no solutions $\Longrightarrow \mathfrak{S}(W)$ has no rational solutions!

SOS Certificates for Lower Bounds: Constraint Case
Let $V \subset \mathbb{R}^{n}$ be a real algebraic variety defined by

$$
f_{1}(\mathbf{X})=\cdots=f_{p}(\mathbf{X})=0
$$

with $F=\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$.
Goal: certify lower bounds on $f^{*}=\inf _{\mathbf{x} \in V} f(\mathbf{x})$.

SOS Certificates for Lower Bounds: Constraint Case Let $V \subset \mathbb{R}^{n}$ be a real algebraic variety defined by

$$
f_{1}(\mathbf{X})=\cdots=f_{p}(\mathbf{X})=0
$$

with $F=\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$.
Goal: certify lower bounds on $f^{*}=\inf _{\mathbf{x} \in V} f(\mathbf{x})$.

- When f^{*} is reached over V [Demmel, Nie, Powers, Sturmfels]:

$$
f-f^{*}+\varepsilon=\operatorname{SOS} \bmod \mathbf{F}, \operatorname{MaxMinors}(\operatorname{jac}([f, \mathbf{F}]))
$$

SOS Certificates for Lower Bounds: Constraint Case Let $V \subset \mathbb{R}^{n}$ be a real algebraic variety defined by

$$
f_{1}(\mathbf{X})=\cdots=f_{p}(\mathbf{X})=0
$$

with $F=\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$.

Goal: certify lower bounds on $f^{*}=\inf _{\mathbf{x} \in V} f(\mathbf{x})$.

- When f^{*} is reached over V [Demmel, Nie, Powers, Sturmfels]:

$$
f-f^{*}+\varepsilon=\operatorname{SOS} \bmod \mathbf{F}, \operatorname{MaxMinors}(\operatorname{jac}([f, \mathbf{F}]))
$$

- When f^{*} is reached at infinity (generalized critical values):
- [Schweighofer'06]: Gradient tentacle
- [Hà,Pham'08,Hà,Pham'10]: Truncated tangency variety
- [Greuet,Guo,Safey El Din,Zhi'12]: Modified polar variety

Polar Varieties [Bank, Giusti, Heintz, Mbakop, Pardo, Safey, Schost]

Let W_{n-i+1} be zero-set of \mathbf{F} and MaxMinors $\left(\operatorname{jac}\left(\mathbf{F}, \mathbf{X}_{\geq i+1}\right)\right)$. In generic coordinates, the polar variety W_{n-i+1} is the critical locus of

$$
\pi_{i}:\left(X_{1}, \ldots, X_{n}\right) \longrightarrow\left(X_{1}, \ldots, X_{i}\right)
$$

restricted to $V(\mathbf{F})$.

- $\operatorname{codim} W_{n-i+1}=n-i+1$ and $\operatorname{dim}\left(W_{n-i+1} \cap V\left(X_{1}, \ldots, X_{i-1}\right)\right)=0$
- $\bigcup_{i=1}^{n-s}\left(W_{n-i+1} \cap V\left(X_{1}, \ldots, X_{i-1}\right)\right) \cap \mathbb{R}^{n}=\emptyset \Leftrightarrow V \cap \mathbb{R}^{n}=\emptyset$

Polar Varieties [Bank, Giusti, Heintz, Mbakop, Pardo, Safey, Schost] Let W_{n-i+1} be zero-set of \mathbf{F} and MaxMinors $\left(\operatorname{jac}\left(\mathbf{F}, \mathbf{X}_{\geq i+1}\right)\right)$. In generic coordinates, the polar variety W_{n-i+1} is the critical locus of

$$
\pi_{i}:\left(X_{1}, \ldots, X_{n}\right) \longrightarrow\left(X_{1}, \ldots, X_{i}\right)
$$

restricted to $V(\mathbf{F})$.

- $\operatorname{codim} W_{n-i+1}=n-i+1$ and $\operatorname{dim}\left(W_{n-i+1} \cap V\left(X_{1}, \ldots, X_{i-1}\right)\right)=0$

Modified Polar Varieties [Greuet,Guo,Safey El Din,Zhi'12]

Let W_{n-i+1} be zero-set of \mathbf{F}, MaxMinors $\left(\operatorname{jac}\left([f, \mathbf{F}], \mathbf{X}_{\geq i+1}\right)\right)$

- $W=\bigcup W_{n-i+1} \cap V\left(X_{1}, \ldots, X_{i-1}\right)$ has dimension 1
- $f\left(V \cap \mathbb{R}^{n}\right)=f\left(W \cap \mathbb{R}^{n}\right)$

Polar Varieties: Example

- $f=x, g=x^{2}+y^{2}+(z-1)^{2}-1$,
- $V=V(g)$.

Polar Varieties: Example

- $f=x, g=x^{2}+y^{2}+(z-1)^{2}-1$,
- $V=V(g)$.

Polar Varieties.

- $W_{3}=V \rightarrow \operatorname{dim} 2$;

Polar Varieties: Example

- $f=x, g=x^{2}+y^{2}+(z-1)^{2}-1$,
- $V=V(g)$.

Polar Varieties.

- $W_{3}=V \rightarrow \operatorname{dim} 2$;
- $W_{2} \rightarrow \operatorname{dim} 1$
\rightarrow same extrema

Polar Varieties: Example

- $f=x, g=x^{2}+y^{2}+(z-1)^{2}-1$,
- $V=V(g)$.

Polar Varieties.

- $W_{3}=V \rightarrow \operatorname{dim} 2$;
- $W_{2} \rightarrow \operatorname{dim} 1$
\rightarrow same extrema
- $W_{3} \rightarrow \operatorname{dim} 0$
\rightarrow same extrema

Polar Varieties: Example

- $f=x, g=x^{2}+y^{2}+(z-1)^{2}-1$,
- $V=V(g)$.

Polar Varieties.

- $W_{3}=V \rightarrow \operatorname{dim} 2 ;$
- $W_{2} \rightarrow \operatorname{dim} 1$
\rightarrow same extrema
- $W_{3} \rightarrow \operatorname{dim} 0$
\rightarrow same extrema
$\rightarrow f\left(V \cap \mathbb{R}^{n}\right)$ and $f\left(W_{i} \cap \mathbb{R}^{n}\right)$: same extrema

Existence of SOS certificates

Asymptotic values over $S:\left\{y \in \mathbb{R} \mid \exists x_{k} \subset S,\left\|x_{k}\right\| \rightarrow \infty, f\left(x_{k}\right) \rightarrow y\right\}$
Theorem (Schweighofer 2006)
$f, h_{1}, \ldots, h_{m} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid h_{1}(\mathbf{x}) \geq 0, \ldots, h_{m}(\mathbf{x}) \geq 0\right\}$ and

1. $f>0$ over S and f bounded over S;
2. asymptotic values over $S \rightarrow$ finite subset of $] 0,+\infty[$.

Then

$$
f=\sum_{\delta \in\{0,1\}^{m}} \operatorname{SOS} h_{1}^{\delta_{1}} \cdots h_{m}^{\delta_{m}}
$$

Existence of SOS certificates

Asymptotic values over $S:\left\{y \in \mathbb{R} \mid \exists x_{k} \subset S,\left\|x_{k}\right\| \rightarrow \infty, f\left(x_{k}\right) \rightarrow y\right\}$
Theorem (Schweighofer 2006)
$f, h_{1}, \ldots, h_{m} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid h_{1}(\mathbf{x}) \geq 0, \ldots, h_{m}(\mathbf{x}) \geq 0\right\}$ and

1. $f>0$ over S and f bounded over S;
2. asymptotic values over $S \rightarrow$ finite subset of $] 0,+\infty[$.

Then

$$
f=\sum_{\delta \in\{0,1\}^{m}} \operatorname{SOS} h_{1}^{\delta_{1}} \cdots h_{m}^{\delta_{m}}
$$

Point $2 \rightarrow \mathbf{O K}$ if $\operatorname{dim} S=1$.

Existence of SOS certificates

Asymptotic values over $S:\left\{y \in \mathbb{R} \mid \exists x_{k} \subset S,\left\|x_{k}\right\| \rightarrow \infty, f\left(x_{k}\right) \rightarrow y\right\}$
Theorem (Schweighofer 2006)
$f, h_{1}, \ldots, h_{m} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid h_{1}(\mathbf{x}) \geq 0, \ldots, h_{m}(\mathbf{x}) \geq 0\right\}$ and

1. $f>0$ over S and f bounded over S;
2. asymptotic values over $S \rightarrow$ finite subset of $] 0,+\infty[$.

Then

$$
f=\sum_{\delta \in\{0,1\}^{m}} \operatorname{SOS} h_{1}^{\delta_{1}} \cdots h_{m}^{\delta_{m}}
$$

Point $2 \rightarrow \mathbf{O K}$ if $\operatorname{dim} S=1$.
Modified Polar Varieties $\rightarrow W$ of dimension 1, $f\left(V \cap \mathbb{R}^{n}\right)=f\left(W \cap \mathbb{R}^{n}\right)$

Existence Theorem (Greuet, Guo,Safey El Din,Zhi'12)

Let $B>f^{\star}$, up to a generic linear change of coordinates

$$
f-f^{\star}+\varepsilon=\operatorname{SOS}+\operatorname{SOS}(B-f) \bmod I(W) \text { in } \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Numerical Instabilities Coming from Asymptotic Values
Consider the problem $f^{*}=\inf _{x, y \in \mathbb{R}} f(x, y):=(1-x y)^{2}+y^{2}$,

$$
\begin{aligned}
& \sup _{r \in \mathbb{R}} r \\
& f(X)-r \equiv m_{d_{1}}(X)^{T} \cdot W \cdot m_{d_{1}}(X)+m_{d_{2}}(X)^{T} \cdot V \cdot m_{d_{2}}(X) \cdot(M-f) \bmod \left\langle\frac{\partial f}{\partial x}\right\rangle \\
& W \succeq 0, \quad W^{T}=W, \quad V \succeq 0, \quad V^{T}=V .
\end{aligned}
$$

where $m_{d_{1}}(X)=m_{d_{2}}(X):=\left[1, x, y, x^{2}, x y, y^{2}\right]$.

Numerical Instabilities Coming from Asymptotic Values
Consider the problem $f^{*}=\inf _{x, y \in \mathbb{R}} f(x, y):=(1-x y)^{2}+y^{2}$,

$$
\begin{aligned}
& \sup _{r \in \mathbb{R}} r \\
& f(X)-r \equiv m_{d_{1}}(X)^{T} \cdot W \cdot m_{d_{1}}(X)+m_{d_{2}}(X)^{T} \cdot V \cdot m_{d_{2}}(X) \cdot(M-f) \bmod \left\langle\frac{\partial f}{\partial x}\right\rangle \\
& W \succeq 0, \quad W^{T}=W, \quad V \succeq 0, \quad V^{T}=V .
\end{aligned}
$$

where $m_{d_{1}}(X)=m_{d_{2}}(X):=\left[1, x, y, x^{2}, x y, y^{2}\right]$. It dual problem is:

$$
\inf _{y_{\alpha} \in \mathbb{R}} \quad \sum_{\alpha} f_{\alpha} y_{\alpha}, \quad P \succeq 0, \quad Q \succeq 0
$$

$$
P=\left[\begin{array}{llllll}
y_{0,0} & \cdot & . & . & \cdot & y_{0,2} \\
y_{1,0} & \cdot & . & . & . & y_{1,2} \\
y_{0,1} & \cdot & . & . & . & y_{0,3} \\
y_{2,0} & \cdot & . & . & . & y_{2,2} \\
y_{1,1} & \cdot & . & . & . & y_{1,3} \\
y_{0,2} & \cdot & . & . & . & y_{0,4}
\end{array}\right] \quad Q=\left[\begin{array}{ccccc}
4 y_{0,0}+y_{1,1}-y_{0,2} & . & . & . & 5 y_{1,1}-y_{0,2} \\
4 y_{1,0}-y_{0,1}+y_{2,1} & . & . & . & 5 y_{2,1}-y_{0,1} \\
5 y_{0,1}-y_{0,3} & . & . & . & 5 y_{0,1}-y_{0,3} \\
\hline & \cdot \\
y_{3,1}-y_{1,1}+4 y_{2,0} & . & . & . & 5 y_{3,1}-y_{1,1} \\
5 y_{1,1}-y_{0,2} & . & . & . & 5 y_{1,1}-y_{0,2} \\
5 y_{0,2}-y_{0,4} & . & . & . & 5 y_{0,2}-y_{0,4} \\
\hline
\end{array}\right]
$$

Unbounded Moment Matrices

Denote the optimal point $p^{*}=\left(x^{*}, y^{*}\right)$ of $f=(1-x y)^{2}+y^{2}$,

- $x^{*} y^{*} \rightarrow 1$ and $y^{*} \rightarrow 0 \Longrightarrow x^{* i} y^{* j} \rightarrow \infty$ with $i>j$;

Unbounded Moment Matrices

Denote the optimal point $p^{*}=\left(x^{*}, y^{*}\right)$ of $f=(1-x y)^{2}+y^{2}$,

- $x^{*} y^{*} \rightarrow 1$ and $y^{*} \rightarrow 0 \Longrightarrow x^{* i} y^{* j} \rightarrow \infty$ with $i>j$;
- The moment $y_{i, j}=x^{* i} y^{* j}$ is a minimizer of the dual problem;

Unbounded Moment Matrices

Denote the optimal point $p^{*}=\left(x^{*}, y^{*}\right)$ of $f=(1-x y)^{2}+y^{2}$,

- $x^{*} y^{*} \rightarrow 1$ and $y^{*} \rightarrow 0 \Longrightarrow x^{* i} y^{* j} \rightarrow \infty$ with $i>j$;
- The moment $y_{i, j}=x^{* i} y^{* j}$ is a minimizer of the dual problem;
- $y_{i, j} \rightarrow \infty$ with $i>j$;

Unbounded Moment Matrices

Denote the optimal point $p^{*}=\left(x^{*}, y^{*}\right)$ of $f=(1-x y)^{2}+y^{2}$,

- $x^{*} y^{*} \rightarrow 1$ and $y^{*} \rightarrow 0 \Longrightarrow x^{* i} y^{* j} \rightarrow \infty$ with $i>j$;
- The moment $y_{i, j}=x^{* i} y^{* j}$ is a minimizer of the dual problem;
- $y_{i, j} \rightarrow \infty$ with $i>j$;
- The moment matrices P and Q are unbounded at the minimizer.

Exploit the Sparsity Structure

- Reduce to $m_{d_{1}}=\left[1, y, x y, y^{2}\right], m_{d_{2}}=[1, y, x y]$

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
y_{0,0} & y_{0,1} & y_{1,1} & y_{0,2} \\
y_{0,1} & y_{0,2} & y_{1,2} & y_{0,3} \\
y_{1,1} & y_{1,2} & y_{2,2} & y_{1,3} \\
y_{0,2} & y_{0,3} & y_{1,3} & y_{0,4}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
4 y_{0,0}+y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2} \\
5 y_{0,1}-y_{0,3} & 5 y_{0,2}-y_{0,4} & 5 y_{0,1}-y_{0,3} \\
5 y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2}
\end{array}\right]
\end{aligned}
$$

Exploit the Sparsity Structure

- Reduce to $m_{d_{1}}=\left[1, y, x y, y^{2}\right], m_{d_{2}}=[1, y, x y]$

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
y_{0,0} & y_{0,1} & y_{1,1} & y_{0,2} \\
y_{0,1} & y_{0,2} & y_{1,2} & y_{0,3} \\
y_{1,1} & y_{1,2} & y_{2,2} & y_{1,3} \\
y_{0,2} & y_{0,3} & y_{1,3} & y_{0,4}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
4 y_{0,0}+y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2} \\
5 y_{0,1}-y_{0,3} & 5 y_{0,2}-y_{0,4} & 5 y_{0,1}-y_{0,3} \\
5 y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2}
\end{array}\right]
\end{aligned}
$$

- All $y_{i, j}$ with $i>j$ are removed, P, Q are bounded at $\left(x^{*}, y^{*}\right)$;

Exploit the Sparsity Structure

- Reduce to $m_{d_{1}}=\left[1, y, x y, y^{2}\right], m_{d_{2}}=[1, y, x y]$

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
y_{0,0} & y_{0,1} & y_{1,1} & y_{0,2} \\
y_{0,1} & y_{0,2} & y_{1,2} & y_{0,3} \\
y_{1,1} & y_{1,2} & y_{2,2} & y_{1,3} \\
y_{0,2} & y_{0,3} & y_{1,3} & y_{0,4}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
4 y_{0,0}+y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2} \\
5 y_{0,1}-y_{0,3} & 5 y_{0,2}-y_{0,4} & 5 y_{0,1}-y_{0,3} \\
5 y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2}
\end{array}\right]
\end{aligned}
$$

- All $y_{i, j}$ with $i>j$ are removed, P, Q are bounded at $\left(x^{*}, y^{*}\right)$;
- The lower bound computed is

$$
f_{2}^{*} \approx-4.029500408 \times 10^{-24}
$$

Exploit the Sparsity Structure

- Reduce to $m_{d_{1}}=\left[1, y, x y, y^{2}\right], m_{d_{2}}=[1, y, x y]$

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
y_{0,0} & y_{0,1} & y_{1,1} & y_{0,2} \\
y_{0,1} & y_{0,2} & y_{1,2} & y_{0,3} \\
y_{1,1} & y_{1,2} & y_{2,2} & y_{1,3} \\
y_{0,2} & y_{0,3} & y_{1,3} & y_{0,4}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
4 y_{0,0}+y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2} \\
5 y_{0,1}-y_{0,3} & 5 y_{0,2}-y_{0,4} & 5 y_{0,1}-y_{0,3} \\
5 y_{1,1}-y_{0,2} & 5 y_{0,1}-y_{0,3} & 5 y_{1,1}-y_{0,2}
\end{array}\right]
\end{aligned}
$$

- All $y_{i, j}$ with $i>j$ are removed, P, Q are bounded at $\left(x^{*}, y^{*}\right)$;
- The lower bound computed is

$$
f_{2}^{*} \approx-4.029500408 \times 10^{-24}
$$

- The certified lower bound is

$$
f_{2}^{*}=-4.029341206383157355520229568612510632 \times 10^{-24}
$$

Verified Error Bounds for Real Solutions

Let $F(\mathbf{x})=\left[f_{1}, \ldots, f_{m}\right]^{T} \in \mathbb{Q}[\mathbf{x}]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], I=\left\langle f_{1}, \ldots, f_{m}\right\rangle, V \subset \mathbb{C}^{n}$ be the algebraic variety defined by:

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
$$

Verified Error Bounds for Real Solutions

Let $F(\mathbf{x})=\left[f_{1}, \ldots, f_{m}\right]^{T} \in \mathbb{Q}[\mathbf{x}]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], I=\left\langle f_{1}, \ldots, f_{m}\right\rangle, V \subset \mathbb{C}^{n}$ be the algebraic variety defined by:

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{m}\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

We verify the existence of real solutions on $V \cap \mathbb{R}^{n}$

- Zero dimensional case: regular or singular solutions
- Positive dimensional case: radical ideals

Verified Error Bounds for Isolated Regular Solutions

- [Krawczyk'1969, Moore'1977, Rump'1983]

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \tilde{\mathbf{x}} \in \mathbb{R}^{n}$, and $\mathbf{X} \in \mathbb{R}^{n}$ with $\mathbf{0} \in \mathbf{X}$ and $A \in \mathbb{R}^{n \times n}$. Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be given s.t.

$$
\left\{\nabla f_{i}(\mathbf{y}): \mathbf{y} \in \tilde{\mathbf{x}}+\mathbf{X}\right\} \subseteq \mathbf{M}_{i,:}, i=1, \ldots, n
$$

Denote by I_{n} the $n \times n$ identity matrix and assume

$$
-A F(\tilde{\mathbf{x}})+\left(I_{n}-A \mathbf{M}\right) \mathbf{X} \subseteq \operatorname{int}(\mathbf{X})
$$

There is a unique solution $\hat{\mathbf{x}} \in \tilde{\mathbf{x}}+\mathbf{X}$ satisfying $F(\hat{\mathbf{x}})=\mathbf{0}$ and every matrix $\tilde{M} \in \mathbf{M}$ is nonsingular.

Verified Error Bounds for Isolated Regular Solutions

- [Krawczyk'1969, Moore'1977, Rump'1983]

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \tilde{\mathbf{x}} \in \mathbb{R}^{n}$, and $\mathbf{X} \in \mathbb{R}^{n}$ with $\mathbf{0} \in \mathbf{X}$ and $A \in \mathbb{R}^{n \times n}$. Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be given s.t.

$$
\left\{\nabla f_{i}(\mathbf{y}): \mathbf{y} \in \tilde{\mathbf{x}}+\mathbf{X}\right\} \subseteq \mathbf{M}_{i,:}, i=1, \ldots, n
$$

Denote by I_{n} the $n \times n$ identity matrix and assume

$$
-A F(\tilde{\mathbf{x}})+\left(I_{n}-A \mathbf{M}\right) \mathbf{X} \subseteq \operatorname{int}(\mathbf{X})
$$

There is a unique solution $\hat{\mathbf{x}} \in \tilde{\mathbf{x}}+\mathbf{X}$ satisfying $F(\hat{\mathbf{x}})=\mathbf{0}$ and every matrix $\tilde{M} \in \mathbf{M}$ is nonsingular.

- Software: verifynlss in INTLAB [Rump'1999].

Verified Error Bounds for Isolated Regular Solutions

- [Krawczyk'1969, Moore'1977, Rump'1983]

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \tilde{\mathbf{x}} \in \mathbb{R}^{n}$, and $\mathbf{X} \in \mathbb{R}^{n}$ with $\mathbf{0} \in \mathbf{X}$ and $A \in \mathbb{R}^{n \times n}$. Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be given s.t.

$$
\left\{\nabla f_{i}(\mathbf{y}): \mathbf{y} \in \tilde{\mathbf{x}}+\mathbf{X}\right\} \subseteq \mathbf{M}_{i,:}, i=1, \ldots, n
$$

Denote by I_{n} the $n \times n$ identity matrix and assume

$$
-A F(\tilde{\mathbf{x}})+\left(I_{n}-A \mathbf{M}\right) \mathbf{X} \subseteq \operatorname{int}(\mathbf{X})
$$

There is a unique solution $\hat{\mathbf{x}} \in \tilde{\mathbf{x}}+\mathbf{X}$ satisfying $F(\hat{\mathbf{x}})=\mathbf{0}$ and every matrix $\tilde{M} \in \mathbf{M}$ is nonsingular.

- Software: verifynlss in INTLAB [Rump'1999].
- Limited to: square systems, isolated regular solutions.

Verified Error Bounds for Isolated Singular Solutions

An isolated solution $\hat{\mathbf{x}}$ is a singular solution of $F(\mathbf{x})=\mathbf{0}$ iff

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)<n
$$

Verified Error Bounds for Isolated Singular Solutions

An isolated solution $\hat{\mathbf{x}}$ is a singular solution of $F(\mathbf{x})=\mathbf{0}$ iff

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)<n
$$

- It is hard to verify that $F(\mathbf{x})$ has a singular solution.
a singular solution $\xrightarrow{\text { perturbations }}$ a cluster

Verified Error Bounds for Isolated Singular Solutions

An isolated solution $\hat{\mathbf{x}}$ is a singular solution of $F(\mathbf{x})=\mathbf{0}$ iff

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)<n
$$

- It is hard to verify that $F(\mathbf{x})$ has a singular solution.
a singular solution $\xrightarrow{\text { perturbations }}$ a cluster
- It is not hard to verify that a perturbed system $\widetilde{F}(\mathbf{x})$ within a small verified bound has a singular solution.

Verified Error Bounds for Isolated Singular Solutions

- [Kanzawa,Oishi'99]: the existence of imperfect singular solutions of nonlinear equations.

Verified Error Bounds for Isolated Singular Solutions

- [Kanzawa,Oishi'99]: the existence of imperfect singular solutions of nonlinear equations.
- [Rump,Graillat'09]: the existence of a double root of a perturbed system.

Verified Error Bounds for Isolated Singular Solutions

- [Kanzawa,Oishi'99]: the existence of imperfect singular solutions of nonlinear equations.
- [Rump,Graillat'09]: the existence of a double root of a perturbed system.
- [Mantzaflaris,Mourrain'11]: the existence of a multiple root of a nearby system with a given multiplicity structure, depends on the accuracy of the given approximate multiple root.

Verified Error Bounds for Isolated Singular Solutions

- [Kanzawa,Oishi'99]: the existence of imperfect singular solutions of nonlinear equations.
- [Rump,Graillat'09]: the existence of a double root of a perturbed system.
- [Mantzaflaris,Mourrain'11]: the existence of a multiple root of a nearby system with a given multiplicity structure, depends on the accuracy of the given approximate multiple root.
- [Li and Zhi'12,14]: the existence of breadth-one singular solutions and the existence of a singular solution in general case of a perturbed system.

Deflation Technique

Let $\hat{\mathbf{x}}$ be a singular solution of $F(\mathbf{x})=\mathbf{0}$ with $r=\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)<n$.

Minors

$\hat{\mathbf{x}}$ is a solution of

$$
\left\{\begin{array}{l}
F(\mathbf{x})=\mathbf{0} \\
\operatorname{det}(A)=0, \forall A \in F_{\mathbf{x}}^{r+1}
\end{array}\right.
$$

where $F_{\mathbf{x}}^{r+1}$ denotes the set of all $(r+1) \times(r+1)$ minors of $F_{\mathbf{x}}$.

Null Space

There exists a unique $\hat{\lambda}$ such that $(\hat{\mathbf{x}}, \hat{\lambda})$ is a solution of

$$
\left\{\begin{aligned}
F(\mathbf{x}) & =\mathbf{0} \\
F_{\mathbf{x}}(\mathbf{x}) B \lambda & =\mathbf{0} \\
\mathbf{h}^{*} \lambda & =1
\end{aligned}\right.
$$

where $B \in \mathbb{C}^{n \times(r+1)}, \mathbf{h} \in \mathbb{C}^{r+1}$.

Deflation Technique

Let $\hat{\mathbf{x}}$ be a singular solution of $F(\mathbf{x})=\mathbf{0}$ with $r=\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)<n$.

Minors

$\hat{\mathbf{x}}$ is a solution of

$$
\left\{\begin{array}{l}
F(\mathbf{x})=\mathbf{0} \\
\operatorname{det}(A)=0, \forall A \in F_{\mathbf{x}}^{r+1}
\end{array}\right.
$$

where $F_{\mathbf{x}}^{r+1}$ denotes the set of all $(r+1) \times(r+1)$ minors of $F_{\mathbf{x}}$.

Null Space

There exists a unique $\hat{\lambda}$ such that $(\hat{\mathbf{x}}, \hat{\lambda})$ is a solution of

$$
\left\{\begin{aligned}
F(\mathbf{x}) & =\mathbf{0} \\
F_{\mathbf{x}}(\mathbf{x}) B \lambda & =\mathbf{0} \\
\mathbf{h}^{*} \lambda & =1
\end{aligned}\right.
$$

where $B \in \mathbb{C}^{n \times(r+1)}, \mathbf{h} \in \mathbb{C}^{r+1}$.

Deflation \sharp to derive a regular solution is strictly $<\mu$ [Leykin et al.'06].

Deflation Technique

Let $\hat{\mathbf{x}}$ be a singular solution of $F(\mathbf{x})=\mathbf{0}$ with $r=\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)<n$.

Minors

$\hat{\mathbf{x}}$ is a solution of

$$
\left\{\begin{array}{l}
F(\mathbf{x})=\mathbf{0} \\
\operatorname{det}(A)=0, \forall A \in F_{\mathbf{x}}^{r+1}
\end{array}\right.
$$

where $F_{\mathbf{x}}^{r+1}$ denotes the set of all $(r+1) \times(r+1)$ minors of $F_{\mathbf{x}}$.

Null Space

There exists a unique $\hat{\lambda}$ such that $(\hat{\mathbf{x}}, \hat{\lambda})$ is a solution of

$$
\left\{\begin{aligned}
F(\mathbf{x}) & =\mathbf{0}, \\
F_{\mathbf{x}}(\mathbf{x}) B \lambda & =\mathbf{0}, \\
\mathbf{h}^{*} \lambda & =1,
\end{aligned}\right.
$$

where $B \in \mathbb{C}^{n \times(r+1)}, \mathbf{h} \in \mathbb{C}^{r+1}$.

Deflation $\#$ to derive a regular solution is strictly $<\mu$ [Leykin et al.'06].

Remark

The deflated regular system is an over-determined system!

Verification of Breadth-one Singular Solutions

- Suppose $\operatorname{corank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)=1$. Let μ be the multiplicity and $b_{0}, b_{1}, \ldots, b_{\mu-2}$ be smoothing parameters. Construct a square and regular system

$$
G(\mathbf{x}, \mathbf{b}, \mathbf{a})=\left(\begin{array}{c}
F_{0}(\mathbf{x}, \mathbf{b})=F(\mathbf{x})+\left(\sum_{v=0}^{\mu-2} \frac{b_{v} x_{1}^{v}}{v!}\right) \mathbf{e}_{1} \\
F_{1}\left(\mathbf{x}, \mathbf{b}, a_{1,2}, \ldots, a_{1, n}\right) \\
\vdots \\
F_{\mu-1}\left(\mathbf{x}, \mathbf{b}, a_{1,2}, \ldots, a_{1, n}, \ldots, a_{\mu-1,2}, \ldots, a_{\mu-1, n}\right)
\end{array}\right)
$$

in $\underbrace{n}_{\mathbf{x}}+\underbrace{\mu-1}_{\mathbf{b}}+\underbrace{(\mu-1)(n-1)}_{\mathbf{a}}=n \mu$ variables and

$$
F_{k}\left(\mathbf{x}, \mathbf{b}, a_{1,2}, \ldots, a_{k, n}\right):=\sum_{j=1}^{k-1} \frac{j}{k} \cdot F_{k-j, \mathbf{x}} \cdot \mathbf{a}_{j}+F_{\mathbf{x}} \cdot \mathbf{a}_{k}
$$

$$
\mathbf{a}_{1}=\left(1, a_{1,2}, \ldots, a_{1, n}\right)^{T}, \mathbf{a}_{i}=\left(0, a_{i, 2}, \ldots, a_{i, n}\right)^{T}, i=2, \ldots, \mu-1
$$

Verification of Breadth-one Singular Solutions

- Suppose $\operatorname{corank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)=1$. Let μ be the multiplicity and $b_{0}, b_{1}, \ldots, b_{\mu-2}$ be smoothing parameters. Construct a square and regular system

$$
G(\mathbf{x}, \mathbf{b}, \mathbf{a})=\left(\begin{array}{c}
F_{0}(\mathbf{x}, \mathbf{b})=F(\mathbf{x})+\left(\sum_{v=0}^{\mu-2} \frac{b_{v} x_{1}^{v}}{v!}\right) \mathbf{e}_{1} \\
F_{1}\left(\mathbf{x}, \mathbf{b}, a_{1,2}, \ldots, a_{1, n}\right) \\
\vdots \\
F_{\mu-1}\left(\mathbf{x}, \mathbf{b}, a_{1,2}, \ldots, a_{1, n}, \ldots, a_{\mu-1,2}, \ldots, a_{\mu-1, n}\right)
\end{array}\right)
$$

in $\underbrace{n}_{\mathbf{x}}+\underbrace{\mu-1}_{\mathbf{b}}+\underbrace{(\mu-1)(n-1)}_{\mathbf{a}}=n \mu$ variables and

$$
F_{k}\left(\mathbf{x}, \mathbf{b}, a_{1,2}, \ldots, a_{k, n}\right):=\sum_{j=1}^{k-1} \frac{j}{k} \cdot F_{k-j, \mathbf{x}} \cdot \mathbf{a}_{j}+F_{\mathbf{x}} \cdot \mathbf{a}_{k},
$$

$$
\mathbf{a}_{1}=\left(1, a_{1,2}, \ldots, a_{1, n}\right)^{T}, \mathbf{a}_{i}=\left(0, a_{i, 2}, \ldots, a_{i, n}\right)^{T}, i=2, \ldots, \mu-1
$$

- Suppose $\hat{\mathbf{x}}$, â and $\hat{\mathbf{b}}$ are verified inclusions for G, then $\hat{\mathbf{x}}$ is a breadth-one singular root of $\widetilde{F}(\mathbf{x}, \hat{\mathbf{b}})$ of multiplicity μ [Li,Zhi'12].

Verification of Breadth-one Singular Solutions

- The system $F=\left\{x_{1}^{2} x_{2}-x_{1} x_{2}^{2}, x_{1}-x_{2}^{2}\right\}$ has a singular solution $(0,0)$ of multiplicity 4 [Rump, Graillat'09].

Verification of Breadth-one Singular Solutions

- The system $F=\left\{x_{1}^{2} x_{2}-x_{1} x_{2}^{2}, x_{1}-x_{2}^{2}\right\}$ has a singular solution $(0,0)$ of multiplicity 4 [Rump, Graillat'09].
- Construct an augmented system

$$
G(\mathbf{x}, \mathbf{b}, \mathbf{a})=\left(\begin{array}{c}
x_{1}^{2} x_{2}-x_{1} x_{2}^{2}-\mathbf{b}_{\mathbf{0}}-\mathbf{b}_{\mathbf{1}} \mathbf{x}_{\mathbf{2}}-\frac{\mathbf{b}_{\mathbf{2}}}{\mathbf{2}} \mathbf{x}_{\mathbf{2}}^{\mathbf{2}} \\
x_{1}-x_{2}^{2} \\
2 a_{1} x_{1} x_{2}-a_{1} x_{2}^{2}+x_{1}^{2}-2 x_{1} x_{2}-\mathbf{b}_{\mathbf{1}}-\mathbf{b}_{\mathbf{2}} \mathbf{x}_{\mathbf{2}} \\
a_{1}-2 x_{2} \\
a_{1}^{2} x_{2}+2 a_{1} x_{1}-2 a_{1} x_{2}+2 a_{2} x_{1} x_{2}-a_{2} x_{2}^{2}-\mathbf{x}_{\mathbf{1}}-\mathbf{b}_{\mathbf{2}} \\
a_{2}-1 \\
a_{1}^{2}+a_{1} a_{2} x_{2}-a_{1}+2 a_{2} x_{1}-2 a_{2} x_{2}+2 a_{3} x_{1} x_{2}-a_{3} x_{2}^{2} \\
a_{3}
\end{array}\right)
$$

Verification of Breadth-one Singular Solutions

- Applying INTLAB function verifynlss to G with

$$
\tilde{\mathbf{x}}=(0.002,0.003,0.002,1.001,-0.01,0,0,0)
$$

we prove that

$$
\widetilde{F}(\mathbf{x}, \hat{\mathbf{b}})=\binom{x_{1}^{2} x_{2}-x_{1} x_{2}^{2}-\hat{\mathbf{b}}_{\mathbf{0}}-\hat{\mathbf{b}}_{\mathbf{1}} \mathbf{x}_{\mathbf{2}}-\frac{\hat{\mathbf{b}}_{\mathbf{2}}}{\mathbf{2}} \mathbf{x}_{\mathbf{2}}^{\mathbf{2}}}{x_{1}-x_{2}^{2}}
$$

for

$$
-10^{-14} \leq \hat{\mathbf{b}}_{\mathbf{i}} \leq 10^{-14}, i=0,1,2
$$

has a 4-fold breadth-one root $\hat{\mathbf{x}}$ within

$$
-10^{-14} \leq \hat{x}_{i} \leq 10^{-14}, i=1,2 .
$$

Verified Error Bounds for Singular Solutions (General Case)

- Let $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ be an isolated singular solution of $F(\mathbf{x})=\mathbf{0}$ with

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)=n-d,(1<d \leq n)
$$

Verified Error Bounds for Singular Solutions (General Case)

- Let $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ be an isolated singular solution of $F(\mathbf{x})=\mathbf{0}$ with

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)=n-d,(1<d \leq n)
$$

- Let $F_{\mathbf{x}}^{\mathbf{c}(\hat{\mathbf{x}})}$ be obtained from $F_{\mathbf{x}}(\hat{\mathbf{x}})$ by deleting its \mathbf{c}-th columns,

$$
\text { s.t. } \operatorname{rank}\left(F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}})\right)=n-d, \text { for } \mathbf{c}=\left\{c_{1}, c_{2}, \ldots, c_{d}\right\} .
$$

Verified Error Bounds for Singular Solutions (General Case)

- Let $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ be an isolated singular solution of $F(\mathbf{x})=\mathbf{0}$ with

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)=n-d,(1<d \leq n)
$$

- Let $F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}})$ be obtained from $F_{\mathbf{x}}(\hat{\mathbf{x}})$ by deleting its \mathbf{c}-th columns,

$$
\text { s.t. } \operatorname{rank}\left(F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}})\right)=n-d, \text { for } \mathbf{c}=\left\{c_{1}, c_{2}, \ldots, c_{d}\right\} .
$$

- Let $\mathbf{k}=\left\{k_{1}, k_{2}, \ldots, k_{d}\right\}$ be an integer set, $\mathbf{e}_{k_{i}}$ is the k_{i}-th unit vector

$$
\text { s.t. } \operatorname{rank}\left(F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}}), \mathbf{e}_{k_{1}}, \mathbf{e}_{k_{2}}, \ldots, \mathbf{e}_{k_{d}}\right)=n .
$$

Verified Error Bounds for Singular Solutions (General Case)

- Let $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ be an isolated singular solution of $F(\mathbf{x})=\mathbf{0}$ with

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)=n-d,(1<d \leq n)
$$

- Let $F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}})$ be obtained from $F_{\mathbf{x}}(\hat{\mathbf{x}})$ by deleting its \mathbf{c}-th columns,

$$
\text { s.t. } \operatorname{rank}\left(F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}})\right)=n-d, \text { for } \mathbf{c}=\left\{c_{1}, c_{2}, \ldots, c_{d}\right\} .
$$

- Let $\mathbf{k}=\left\{k_{1}, k_{2}, \ldots, k_{d}\right\}$ be an integer set, $\mathbf{e}_{k_{i}}$ is the k_{i}-th unit vector

$$
\text { s.t. } \operatorname{rank}\left(F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}}), \mathbf{e}_{k_{1}}, \mathbf{e}_{k_{2}}, \ldots, \mathbf{e}_{k_{d}}\right)=n .
$$

- We introduce d smoothing parameters $\mathbf{b}=\left(b_{1}, \ldots, b_{d}\right)$ and consider

$$
G(\mathbf{x}, \lambda, \mathbf{b})=\left\{\begin{aligned}
F(\mathbf{x})-\sum_{i=1}^{d} b_{i} \mathbf{e}_{k_{i}} & =\mathbf{0} \\
F_{\mathbf{x}}(\mathbf{x}) \mathbf{v}_{1} & =\mathbf{0}
\end{aligned}\right.
$$

where $\mathbf{v}_{1}=\left(\lambda_{1}, \ldots,{ }_{c_{1}}^{1}, \ldots,{ }_{c_{d}}^{1}, \ldots, \lambda_{n-d}\right)_{n}^{T}$.

Verified Error Bounds for Singular Solutions (General Case)

- Let $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ be an isolated singular solution of $F(\mathbf{x})=\mathbf{0}$ with

$$
\operatorname{rank}\left(F_{\mathbf{x}}(\hat{\mathbf{x}})\right)=n-d,(1<d \leq n)
$$

- Let $F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}})$ be obtained from $F_{\mathbf{x}}(\hat{\mathbf{x}})$ by deleting its \mathbf{c}-th columns,

$$
\text { s.t. } \operatorname{rank}\left(F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}})\right)=n-d, \text { for } \mathbf{c}=\left\{c_{1}, c_{2}, \ldots, c_{d}\right\} .
$$

- Let $\mathbf{k}=\left\{k_{1}, k_{2}, \ldots, k_{d}\right\}$ be an integer set, $\mathbf{e}_{k_{i}}$ is the k_{i}-th unit vector

$$
\text { s.t. } \operatorname{rank}\left(F_{\mathbf{x}}^{\mathbf{c}}(\hat{\mathbf{x}}), \mathbf{e}_{k_{1}}, \mathbf{e}_{k_{2}}, \ldots, \mathbf{e}_{k_{d}}\right)=n
$$

- We introduce d smoothing parameters $\mathbf{b}=\left(b_{1}, \ldots, b_{d}\right)$ and consider

$$
G(\mathbf{x}, \lambda, \mathbf{b})=\left\{\begin{aligned}
F(\mathbf{x})-\sum_{i=1}^{d} b_{i} \mathbf{e}_{k_{i}} & =\mathbf{0}, \\
F_{\mathbf{x}}(\mathbf{x}) \mathbf{v}_{1} & =\mathbf{0},
\end{aligned}\right.
$$

where $\mathbf{v}_{1}=\left(\lambda_{1}, \ldots,{ }_{c_{1}}^{1}, \ldots,{ }_{c_{d}}^{1}, \ldots, \lambda_{n-d}\right)_{n}^{T}$.
Therefore, $(\hat{\mathbf{x}}, \hat{\lambda}, \mathbf{0})$ is an isolated solution of $G(\mathbf{x}, \lambda, \mathbf{b})=\mathbf{0}$.

Verified Error Bounds for Isolated Singular Solutions

- In general, we construct a square and regular system via deflations [Li,Zhi'12,13]

$$
\left\{\begin{array}{c}
\widetilde{F}(\mathbf{x}, \mathbf{b})=\mathbf{0} \\
\widetilde{F}_{\mathbf{x}}(\mathbf{x}, \mathbf{b}) \mathbf{v}_{1}=\mathbf{0} \\
\vdots
\end{array}\right.
$$

where

$$
\widetilde{F}(\mathbf{x}, \mathbf{b})=F(\mathbf{x})-X_{0} \mathbf{b}_{0}-X_{1} \mathbf{b}_{1}-\cdots-X_{s-1} \mathbf{b}_{s-1},
$$

X_{k} consists of $\frac{1}{k!} \cdot x_{\mathbf{c}^{k}(i)}^{k} \cdot \mathbf{e}_{\mathbf{k}^{(k)}(i)}, i=1, \ldots, d^{(k)}$.

Verified Error Bounds for Isolated Singular Solutions

- In general, we construct a square and regular system via deflations [Li,Zhi'12,13]

$$
\left\{\begin{array}{c}
\widetilde{F}(\mathbf{x}, \mathbf{b})=\mathbf{0} \\
\widetilde{F}_{\mathbf{x}}(\mathbf{x}, \mathbf{b}) \mathbf{v}_{1}=\mathbf{0} \\
\vdots
\end{array}\right.
$$

where

$$
\widetilde{F}(\mathbf{x}, \mathbf{b})=F(\mathbf{x})-X_{0} \mathbf{b}_{0}-X_{1} \mathbf{b}_{1}-\cdots-X_{s-1} \mathbf{b}_{s-1},
$$

X_{k} consists of $\frac{1}{k!} \cdot x_{\mathbf{c}^{(k)}(i)}^{k} \cdot \mathbf{e}_{\mathbf{k}^{(k)}(i)}, i=1, \ldots, d^{(k)}$.

- Compute inclusions for $\hat{\mathbf{x}}, \hat{\mathbf{b}}$, then $\hat{\mathbf{x}}$ is an isolated singular solution of $\widetilde{F}(\mathbf{x}, \hat{\mathbf{b}})$.

Verified Error Bounds for Isolated Singular Solutions

- In general, we construct a square and regular system via deflations [Li,Zhi'12,13]

$$
\left\{\begin{array}{c}
\widetilde{F}(\mathbf{x}, \mathbf{b})=\mathbf{0} \\
\widetilde{F}_{\mathbf{x}}(\mathbf{x}, \mathbf{b}) \mathbf{v}_{1}=\mathbf{0} \\
\vdots
\end{array}\right.
$$

where

$$
\widetilde{F}(\mathbf{x}, \mathbf{b})=F(\mathbf{x})-X_{0} \mathbf{b}_{0}-X_{1} \mathbf{b}_{1}-\cdots-X_{s-1} \mathbf{b}_{s-1},
$$

X_{k} consists of $\frac{1}{k!} \cdot x_{\mathbf{c}^{k}(k)(i)} \cdot \mathbf{e}_{\mathbf{k}^{(k)}(i)}, i=1, \ldots, d^{(k)}$.

- Compute inclusions for $\hat{\mathbf{x}}, \hat{\mathbf{b}}$, then $\hat{\mathbf{x}}$ is an isolated singular solution of $\widetilde{F}(\mathbf{x}, \hat{\mathbf{b}})$.
- Software: verifynlss2 by Rump for verifying double roots. viss by Li and Zhu for verifying arbitrary singular roots.

Verified Error Bounds for Isolated Singular Solutions
The system F has $(0,0,0,0)$ as a 131 -fold isolated zero [Dayton and Zeng'05]

$$
F=\left\{x_{1}^{4}-x_{2} x_{3} x_{4}, x_{2}^{4}-x_{1} x_{3} x_{4}, x_{3}^{4}-x_{1} x_{2} x_{4}, x_{4}^{4}-x_{1} x_{2} x_{3}\right\}
$$

Verified Error Bounds for Isolated Singular Solutions

The system F has $(0,0,0,0)$ as a 131 -fold isolated zero [Dayton and Zeng'05]

$$
F=\left\{x_{1}^{4}-x_{2} x_{3} x_{4}, x_{2}^{4}-x_{1} x_{3} x_{4}, x_{3}^{4}-x_{1} x_{2} x_{4}, x_{4}^{4}-x_{1} x_{2} x_{3}\right\}
$$

- Starting from $(0.003,0.010,0.003,0.007)$, by deflation we derive

$$
\tilde{F}(\mathbf{x}, \mathbf{b})=\left\{\begin{array}{l}
x_{1}^{4}-x_{2} x_{3} x_{4}-b_{1}-b_{5} x_{1} \\
x_{2}^{4}-x_{1} x_{3} x_{4}-b_{2}-b_{6} x_{2} \\
x_{3}^{4}-x_{1} x_{2} x_{4}-b_{3}-b_{7} x_{3} \\
x_{4}^{4}-x_{1} x_{2} x_{3}-b_{4}-b_{8} x_{4}
\end{array}\right\} .
$$

Verified Error Bounds for Isolated Singular Solutions

The system F has $(0,0,0,0)$ as a 131 -fold isolated zero [Dayton and Zeng'05]

$$
F=\left\{x_{1}^{4}-x_{2} x_{3} x_{4}, x_{2}^{4}-x_{1} x_{3} x_{4}, x_{3}^{4}-x_{1} x_{2} x_{4}, x_{4}^{4}-x_{1} x_{2} x_{3}\right\}
$$

- Starting from $(0.003,0.010,0.003,0.007)$, by deflation we derive

$$
\tilde{F}(\mathbf{x}, \mathbf{b})=\left\{\begin{array}{l}
x_{1}^{4}-x_{2} x_{3} x_{4}-b_{1}-b_{5} x_{1} \\
x_{2}^{4}-x_{1} x_{3} x_{4}-b_{2}-b_{6} x_{2} \\
x_{3}^{4}-x_{1} x_{2} x_{4}-b_{3}-b_{7} x_{3} \\
x_{4}^{4}-x_{1} x_{2} x_{3}-b_{4}-b_{8} x_{4}
\end{array}\right\} .
$$

- Apply INTLAB function verifynlss, it yields inclusions

$$
-10^{-321} \leq \hat{x}_{i}, \hat{b}_{j} \leq 10^{-321},
$$

which proves that $\tilde{F}(\mathbf{x}, \hat{\mathbf{b}})\left(\left|\hat{b}_{j}\right| \leq 10^{-321}, j=1,2, \ldots, 8\right)$ has an isolated singular solution $\hat{\mathbf{x}}$ within $\left|\hat{x}_{i}\right| \leq 10^{-321}, i=1,2,3,4$.

Verification Method: Positive-dimensional Case

Reduce positive-dimensional cases to zero-dimensional cases.

Verification Method: Positive-dimensional Case

Reduce positive-dimensional cases to zero-dimensional cases.

- A naive method: fixing $n-m$ variables

Verification Method: Positive-dimensional Case

Reduce positive-dimensional cases to zero-dimensional cases.

- A naive method: fixing $n-m$ variables
- Critical point method: adding minors

Verification Method: Positive-dimensional Case

Reduce positive-dimensional cases to zero-dimensional cases.

- A naive method: fixing $n-m$ variables
- Critical point method: adding minors
- Low-rank moment matrix completion method: using approximate solutions and null vectors

A Naive Method: Fixing $n-m$ Variables
Decide attainableness of Voronoi2 $=0$ [Greuet, Safey El Din'11].

A Naive Method: Fixing $n-m$ Variables
Decide attainableness of Voronoi2 $=0$ [Greuet, Safey El Din'11].

- Fixing four variables, $\operatorname{Voronoi2}(\hat{a}, \hat{\alpha}, \hat{\beta}, \hat{X}, Y) \in \mathbb{Q}[Y]$ has no real solutions. Why?

A Naive Method: Fixing $n-m$ Variables
Decide attainableness of Voronoi $2=0$ [Greuet, Safey EI Din'11].

- Fixing four variables, $\operatorname{Voronoi2}(\hat{a}, \hat{\alpha}, \hat{\beta}, \hat{X}, Y) \in \mathbb{Q}[Y]$ has no real solutions. Why?
- Voronoi2 is a sum of 5 squares $\mathbb{Q}[a, \alpha, \beta, X, Y], 0$ is attained on $\left\{Y+a \alpha, 2 a \beta X+4 a^{3} \beta X+4 a^{4} \alpha^{2}+4 a^{4}+4 a^{2} \alpha^{2}+4 a^{2}-a^{2} X^{2}-\beta^{2}\right\}$ and

$$
\left\{a X+\beta,-4 \beta^{2}-4-2 a^{3} \alpha Y-4 a \alpha Y+a^{4} \alpha^{2}+a^{2} Y^{2}-4 a^{2} \beta^{2}-4 a^{2}\right\}
$$

[Kaltofen,Li, Yang,Zhi'08]

A Naive Method: Fixing $n-m$ Variables
Decide attainableness of Voronoi $2=0$ [Greuet, Safey EI Din'11].

- Fixing four variables, $\operatorname{Voronoi} 2(\hat{a}, \hat{\alpha}, \hat{\beta}, \hat{X}, Y) \in \mathbb{Q}[Y]$ has no real solutions. Why?
- Voronoi2 is a sum of 5 squares $\mathbb{Q}[a, \alpha, \beta, X, Y], 0$ is attained on
$\left\{Y+a \alpha, 2 a \beta X+4 a^{3} \beta X+4 a^{4} \alpha^{2}+4 a^{4}+4 a^{2} \alpha^{2}+4 a^{2}-a^{2} X^{2}-\beta^{2}\right\}$
and
$\left\{a X+\beta,-4 \beta^{2}-4-2 a^{3} \alpha Y-4 a \alpha Y+a^{4} \alpha^{2}+a^{2} Y^{2}-4 a^{2} \beta^{2}-4 a^{2}\right\}$
[Kaltofen,Li, Yang,Zhi'08]
- We can fix at most three variables, e.g. a, α, β.

Critical Point Method: a Radical \& Equidimensional Ideal
Choose a point $\mathbf{u} \in \mathbb{R}^{n}, g=\frac{1}{2}\left(x_{1}-u_{1}\right)^{2}+\cdots+\frac{1}{2}\left(x_{n}-u_{n}\right)^{2}$ and

$$
\begin{gathered}
J_{g}(F)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial g}{\partial x_{1}} \\
\vdots & & \vdots & \vdots \\
\frac{\partial f_{1}}{\partial x_{n}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} & \frac{\partial g}{\partial x_{n}}
\end{array}\right] . \\
C(V, \mathbf{u})=\left\{\hat{\mathbf{x}} \in V(I), \operatorname{rank}\left(J_{g}(F(\hat{\mathbf{x}})) \leq n-d\right\} .\right.
\end{gathered}
$$

Critical Point Method: a Radical \& Equidimensional Ideal
Choose a point $\mathbf{u} \in \mathbb{R}^{n}, g=\frac{1}{2}\left(x_{1}-u_{1}\right)^{2}+\cdots+\frac{1}{2}\left(x_{n}-u_{n}\right)^{2}$ and

$$
\begin{gathered}
J_{g}(F)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial g}{\partial x_{1}} \\
\vdots & & \vdots & \vdots \\
\frac{\partial f_{1}}{\partial x_{n}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} & \frac{\partial g}{\partial x_{n}}
\end{array}\right] . \\
C(V, \mathbf{u})=\left\{\hat{\mathbf{x}} \in V(I), \operatorname{rank}\left(J_{g}(F(\hat{\mathbf{x}})) \leq n-d\right\} .\right.
\end{gathered}
$$

Theorem (Aubry,Rouillier,Safey'02)

1. $C(V, \mathbf{u})$ meets every semi-algebraically connected component of $V \cap \mathbb{R}^{n}$; 2. $C(V, \mathbf{u})=V_{\text {sing }} \cup V_{0, \mathbf{u}}$, a variety defined by $n-d+1$ minors $\Delta_{\mathbf{u}, d}(F)$ of $J_{g}(F)$ and $\operatorname{dim}(C(V, \mathbf{u}))<\operatorname{dim}(V)$.

$$
F \longleftarrow F \cup \Delta_{\mathbf{u}, d}(F)
$$

Example: $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}\left(x_{2}+1\right)\left(x_{2}+2\right)$

[Mork, Piene'08]

- Choose a random point $\mathbf{u}=[1,1]^{T}$, define h by the critical point method: $h=16 x_{1} x_{2}+6 x_{2}^{2} x_{1}-6 x_{2}^{2}-12 x_{2}-4$

Example: $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}\left(x_{2}+1\right)\left(x_{2}+2\right)$
[Mork, Piene'08]

- Choose a random point $\mathbf{u}=[1,1]^{T}$, define h by the critical point method: $h=16 x_{1} x_{2}+6 x_{2}^{2} x_{1}-6 x_{2}^{2}-12 x_{2}-4$

- Applying verifynlss to $\{f, h\}$ and 3 roots computed by HOM4PS-2.0, we prove that f has 3 verified real solutions

x_{1}	x_{2}
$-0.3656608 \pm 1.0 \times 10^{-15}$	$-1.9248972 \pm 5.6 \times 10^{-16}$
$0.1962544 \pm 2.6 \times 10^{-16}$	$-1.0385732 \pm 2.2 \times 10^{-16}$
$1.2624706 \pm 3.3 \times 10^{-16}$	$0.4490963 \pm 1.1 \times 10^{-16}$

 $y_{\alpha}=\int x^{\alpha} d \mu$, then y is called a truncated moment sequence. Consider the truncated moment matrix

$$
M_{t}(y):=\left(y_{\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{t}^{n}}
$$

with rows and columns indexed by monomials x^{α} of degree $\leq t$. For instance, in \mathbb{R}^{2}

$$
M_{1}(y)=\left(\begin{array}{cccc}
y_{00} & \mid & y_{10} & y_{01} \\
- & - & - & - \\
y_{10} & \mid & y_{20} & y_{11} \\
y_{01} & \mid & y_{11} & y_{02}
\end{array}\right)
$$

The Low-rank Moment Matrix Completion Method

Similarly, given $g(x)=\sum_{\gamma \in \mathbb{N}^{n}} g_{\gamma} x^{\gamma} \in \mathbb{R}[x]$, the localizing matrix with respect to g is also indexed by monomials x^{α} of degree $\leq t$

$$
M_{t}(g y):=\left(\sum_{\gamma \in \mathbb{N}^{n}} g_{\gamma} y_{\alpha+\beta+\gamma}\right), \quad \alpha, \beta \in \mathbb{N}_{t}^{n}
$$

For instance, in \mathbb{R}^{2}, with $g\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-x_{2}^{2}$,

$$
M_{1}(g y)=\left(\begin{array}{ccc}
1-y_{20}-y_{02} & y_{10}-y_{30}-y_{12} & y_{01}-y_{21}-y_{03} \\
y_{10}-y_{30}-y_{12} & y_{20}-y_{40}-y_{22} & y_{11}-y_{31}-y_{13} \\
y_{01}-y_{21}-y_{03} & y_{11}-y_{31}-y_{13} & y_{02}-y_{22}-y_{04}
\end{array}\right)
$$

The Low-rank Moment Matrix Completion Method

Similarly, given $g(x)=\sum_{\gamma \in \mathbb{N}^{n}} g_{\gamma} x^{\gamma} \in \mathbb{R}[x]$, the localizing matrix with respect to g is also indexed by monomials x^{α} of degree $\leq t$

$$
M_{t}(g y):=\left(\sum_{\gamma \in \mathbb{N}^{n}} g_{\gamma} y_{\alpha+\beta+\gamma}\right), \quad \alpha, \beta \in \mathbb{N}_{t}^{n}
$$

For instance, in \mathbb{R}^{2}, with $g\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-x_{2}^{2}$,

$$
M_{1}(g y)=\left(\begin{array}{ccc}
1-y_{20}-y_{02} & y_{10}-y_{30}-y_{12} & y_{01}-y_{21}-y_{03} \\
y_{10}-y_{30}-y_{12} & y_{20}-y_{40}-y_{22} & y_{11}-y_{31}-y_{13} \\
y_{01}-y_{21}-y_{03} & y_{11}-y_{31}-y_{13} & y_{02}-y_{22}-y_{04}
\end{array}\right)
$$

Note that, $\forall f \in \mathbb{R}[x], \operatorname{deg}(f) \leq t-2 d_{j}, d_{j}=\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil$,

$$
\begin{aligned}
& g_{j}=0 \Longrightarrow f^{2} g_{j}=0 \Longrightarrow M_{t-d_{j}}\left(g_{j} y\right)=0, \quad j=1, \ldots, s_{1}, \\
& g_{j} \geq 0 \Longrightarrow f^{2} g_{j} \geq 0 \Longrightarrow M_{t-d_{j}}\left(g_{j} y\right) \succeq 0, \quad j=s_{1}+1, \ldots, s_{2} .
\end{aligned}
$$

- Apply MMCRSolver [Ma, Zhi'12] for finding an approximate solution $\tilde{\mathbf{x}}$

$$
\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { 1 } \\
{ \text { s. .t. } } & { f _ { 1 } (\mathbf { x }) = 0 , } \\
{ } & { \vdots } \\
{ } & { f _ { m } (\mathbf { x }) = 0 . }
\end{array} \Longrightarrow \left\{\begin{array}{cl}
\min & \left\|M_{t}(y)\right\|_{*} \\
\text { s. t. } & y_{0}=1, \\
& M_{t}(y) \succeq 0, \\
& M_{t-d_{j}}\left(f_{j} y\right)=0,1 \leq j \leq m
\end{array}\right.\right.
$$

- Apply MMCRSolver [Ma, Zhi'12] for finding an approximate solution $\tilde{\mathbf{x}}$

$$
\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { 1 } \\
{ \mathrm { s.t. } } & { f _ { 1 } (\mathbf { x }) = 0 , } \\
{ } & { \vdots } \\
{ } & { f _ { m } (\mathbf { x }) = 0 . }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
\min & \left\|M_{t}(y)\right\|_{*} \\
\text { s. t. } & y_{0}=1, \\
& M_{t}(y) \succeq 0, \\
& M_{t-d_{j}}\left(f_{j} y\right)=0,1 \leq j \leq m
\end{array}\right.\right.
$$

- If $\operatorname{rank}\left(F_{\mathbf{x}}(\tilde{\mathbf{x}})\right)=n-d$, choose a random vector λ :

$$
F(\mathbf{x}) \longleftarrow F(\mathbf{x}) \cup\left\{F_{\mathbf{x}}(\mathbf{x}) \lambda-F_{\mathbf{x}}(\tilde{\mathbf{x}}) \lambda\right\}
$$

- Apply MMCRSolver [Ma, Zhi'12] for finding an approximate solution $\tilde{\mathbf{x}}$

$$
\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { 1 } \\
{ \mathrm { s.t. } } & { f _ { 1 } (\mathbf { x }) = 0 , } \\
{ } & { \vdots } \\
{ } & { f _ { m } (\mathbf { x }) = 0 . }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
\min & \left\|M_{t}(y)\right\|_{*} \\
\text { s. t. } & y_{0}=1, \\
& M_{t}(y) \succeq 0, \\
& M_{t-d_{j}}\left(f_{j} y\right)=0,1 \leq j \leq m
\end{array}\right.\right.
$$

- If $\operatorname{rank}\left(F_{\mathbf{x}}(\tilde{\mathbf{x}})\right)=n-d$, choose a random vector λ :

$$
F(\mathbf{x}) \longleftarrow F(\mathbf{x}) \cup\left\{F_{\mathbf{x}}(\mathbf{x}) \lambda-F_{\mathbf{x}}(\tilde{\mathbf{x}}) \lambda\right\}
$$

- If $\operatorname{rank}\left(F_{\mathbf{x}}(\tilde{\mathbf{x}})\right)<n-d$, compute a null vector \mathbf{v} of $F_{\mathbf{x}}(\tilde{\mathbf{x}})$:

$$
F \longleftarrow F(\mathbf{x}) \cup F_{\mathbf{x}}(\mathbf{x}) \mathbf{v}
$$

Example (continued)

- MMCRSolver yields one approximate real solution

$$
\tilde{\mathbf{x}}=\left[3.671518 \times 10^{-8},-0.999902\right]^{T} .
$$

Example (continued)

- MMCRSolver yields one approximate real solution

$$
\tilde{\mathbf{x}}=\left[3.671518 \times 10^{-8},-0.999902\right]^{T} .
$$

- Choose a random vector $\lambda=[0.715927,-0.328489]^{T}$, let $g=1.431854 x_{1}+0.985467 x_{2}^{2}+1.970934 x_{2}+0.985467$.

Example (continued)

- MMCRSolver yields one approximate real solution

$$
\tilde{\mathbf{x}}=\left[3.671518 \times 10^{-8},-0.999902\right]^{T} .
$$

- Choose a random vector $\lambda=[0.715927,-0.328489]^{T}$, let $g=1.431854 x_{1}+0.985467 x_{2}^{2}+1.970934 x_{2}+0.985467$.

- Applying verifynlss to $\{f, g\}, f$ has a verified real solution within the inclusion

x_{1}	x_{2}
$4.3211387 \times 10^{-8} \pm 2.7 \times 10^{-15}$	$-1 \pm 2.2 \times 10^{-15}$

Dense Random Hypersurfaces

Ex	var	deg	verifyrealrootpm		verifyrealrootpc		HasRealSolutions	
	2	4	2.5	1	2.8	3	0.040	4
2	4	4	4.5	2	17.4	3	8.3	14
3	5	4	8.8	2	21.5	3	665.5	23
4	6	4	14.7	2	9.2	3	780	32
5	11	4	259	6	-	-	-	-
6	2	6	2.5	1	9.6	4	0.07	4
7	3	6	8.1	2	17.1	4	6.96	11
8	4	6	12.8	3	16.5	4	-	-
9	3	8	17.0	3	18.3	5	174	16
10	4	8	69.0	5	-	-	-	-

HasRealSolutions in RAGLib implemented by Safey El Din.

- denotes it is out of memory and no solutions are found.

Positive-dimensional Radical Ideals

system	var				verifyrealrootpm		verifyrealrootpc		HasRealSolutions	
				time	sol	time	sol	time	sol	
curve0	2	1	12	9.28	3_{\triangle}	10.8	$4 \triangle$	0.30	12	
butcher	4	2	3	3.41	1	319	30	0.89	7	
gerdt2	5	3	4	4.82	1	506	31	0.27	6	
hairer1	8	6	3	2.06	1	1.25	1	1.44	4	
lanconelli	8	2	3	5.38	1	1.48	2	0.78	1	
geddes2	5	4	6	18.9	1	5.43	11	1200	1	
birkhoff	4	1	10	127	1_{\triangle}	7.72	7	31.2	6	
Voronoi2	5	1	18	19.9	1_{\triangle}	587	1_{\triangle}	211	1	

\triangle denotes the singular solutions verified by verifynlss2 or viss

Existence of Real Solutions of Semi-algebraic Systems

Let $V \subset \mathbb{C}^{n}$ be a semi-algebraic set defined by:

$$
f_{1}(\mathbf{x})=\cdots=f_{m}(\mathbf{x})=0, g_{1}(\mathbf{x}) \geq 0, \ldots, g_{s}(\mathbf{x}) \geq 0
$$

$f_{i}(\mathbf{x}), g_{j}(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ for $1 \leq i \leq m$ and $1 \leq j \leq s$.

Existence of Real Solutions of Semi-algebraic Systems

Let $V \subset \mathbb{C}^{n}$ be a semi-algebraic set defined by:

$$
f_{1}(\mathbf{x})=\cdots=f_{m}(\mathbf{x})=0, g_{1}(\mathbf{x}) \geq 0, \ldots, g_{s}(\mathbf{x}) \geq 0
$$

$f_{i}(\mathbf{x}), g_{j}(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ for $1 \leq i \leq m$ and $1 \leq j \leq s$.
We verify the existence of real solutions on $V \cap \mathbb{R}^{n}$ using low-rank moment matrix completion method [Ma, Zhi'12]

$$
\left\{\begin{array} { c l }
{ \operatorname { m i n } } & { 1 } \\
{ \mathrm { s.t } . } & { f _ { 1 } (\mathbf { x }) = 0 , } \\
{ } & { \vdots } \\
{ } & { f _ { m } (\mathbf { x }) = 0 , } \\
{ } & { g _ { 1 } (\mathbf { x }) \geq 0 , } \\
{ } & { \vdots } \\
{ } & { g _ { s } (\mathbf { x }) \geq 0 . }
\end{array} \quad \Longrightarrow \left\{\begin{array}{cl}
\min & \left\|M_{t}(y)\right\|_{*} \\
\text { s. t. } & y_{0}=1, \\
& M_{t}(y) \succeq 0, \\
& M_{t-d_{i}}\left(f_{i} y\right)=0,1 \leq i \leq m \\
& M_{t-d_{j}}\left(g_{j} y\right) \succeq 0,1 \leq j \leq s
\end{array}\right.\right.
$$

The Kissing Number Problems

The Kissing number is defined as the maximal number of non-overlapping unit spheres that can be arranged such that they each touch another given unit sphere.

The Kissing Number Problems

For $d=2, n=6$, the problem is reduced to verify

$$
\begin{cases}x_{i}^{2}+y_{i}^{2}=1, & 1 \leq i \leq 6 \\ \left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq 1, & 1 \leq i<j \leq 6\end{cases}
$$

has a real solution.

problem	vars	$\sharp e q$	\#ineq	deg	verifyrealrootpm			HasRealSolutions	
					time	sol	width	time	sol
Kissing21	2	1	0	2	0.53	2	$6.93 e-18$	0.015	4
Kissing22	4	2	1	2	5.10	8	$1.98 e-14$	0.171	2
Kissing23	6	3	3	2	21.01	$9 \triangle$	$1.19 e-13$	4.851	16
Kissing24	9	4	6	2	62.24	5	$2.109 e-14$	63.54	8
Kissing25	10	5	10	2	413.43	6	$8.03 e-13$	2918	12
Kissing26	16	6	15	2	2671.96	24_{\triangle}	$4.74 e-13$	-	-

Concluding Remarks

- Symbolic-numeric computation can be used to compute reliable results faster.
- Huge amount of works to develop at the interface of numeric computation and symbolic computations.

Concluding Remarks

- Symbolic-numeric computation can be used to compute reliable results faster.
- Huge amount of works to develop at the interface of numeric computation and symbolic computations.

Announcements:

- The 3rd Workshop on Hybrid Methodologies for Symbolic-Numeric Computation, August, 2015, Beijing, China.
- SIAM Conference on Applied Algebraic Geometry, August 3-7, 2015, Daejeon, South Korea.
- All my collaborators of these works
- NCSU: E.L. Kaltofen, S. Hutton
- LIP6: M. Safey El Din, A. Greuet
- F. Guo, Q.D. Guo, B. Li, Y. Ma, N. Li, C. Wang, Z.F. Yang, Y.J. Zhu
- T. Yamaguchi, K. Nagasaka, F. Winkler and A. Szanto

