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What is Symbolic-Numeric Computation?

I Definition: the use of software that combines symbolic and numeric
methods to solve problems [Wikipedia]

I Objective: compute reliable results faster.

I Challenge: solve mathematical problems that today are not solvable
by numerical or symbolic methods alone [Corless,Kaltofen,Watt 2003]
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Computing Validated Results via Symbolic-numeric Algorithm

I Compute an approximate solution of good quality for a given problem
using numeric algorithms.

I Verify the computed results using exact rational arithmetic or interval
arithmetic.

Validated Results for Two Problems

I Certification using sum-of-squares
[Peyrl, Parrilo’07,08; Kaltofen, Li, Yang, Zhi’08,09; Ma, Zhi’10;
Monniaux, Corbineau’11; Guo, Kaltofen, Zhi’12; Greuet, Guo, Safey El
Din, Zhi’12]

I Verification of solutions of polynomial systems [ Beltran, Leykin’12;
Hauenstein, Sottile’12; Kanzawa, Oishi’99, Mantzaflaris, Mourrain’11;
Rump, Graillat’09, Li, Zhi’12,13,14; Yang, Zhi, Zhu’13]
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Certification Using Sum-Of-Squares

Emil Artin’s 1927 Theorem (Hilbert’s 17th Problem)

∀ξ1, . . . ,ξn ∈ R : f (ξ1, . . . ,ξn)≥ 0, f ∈Q[X1, . . . ,Xn]

m

∃ui,v j ∈Q[X1, . . . ,Xn] : f (X1, . . . ,Xn) =
∑

m
i=1 u2

i

∑
m
j=1 v2

j

m

∃rational W [1] � 0,W [2] � 0: f =
mT

d W [1] md

mT
e W [2] me

with md(X1, . . . ,Xn), me(X1, . . . ,Xn) vectors of terms

W � 0 (positive semidefinite)

⇐⇒W = PL D LT PT , D diagonal, Di,i ≥ 0 (Cholesky)



Theodore Motzkin’s 1967 Polynomial

(3 arithm. mean−3 geom. mean)(x4y2,x2y4,z6)

= x4y2 + x2y4 + z6−3x2y2z2

is positive semidefinite (AGM inequality) but not a sum-of-squares.

Moreover,

(x4y2 + x2y4 + z6−3x2y2z2)(x2 + z2) =(
z4− x2y2)2

+
(
xyz2− x3y

)2
+
(
xz3− xy2z

)2

[Kaltofen,Li,Yang,Zhi JSC 2012]
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Semidefinite Programming: Block Form

A[i, j],C[ j],W [ j] are real symmetric matrix blocks

W = block diagonal(W [1], ...,W [k])

min
W [1],...,W [k]

C[1] •W [1]+ · · ·+C[k] •W [k]

s. t.

A[1,1] •W [1]+ · · ·+A[1,k] •W [k]

...

A[m,1] •W [1]+ · · ·+A[m,k] •W [k]

= b ∈ Rm,

W [ j] � 0,W [ j] = (W [ j])T , j = 1, . . . ,k

Note: the Hilbert-Artin form f × (mT
e W [2]me) = mT

d W [1]md is a feasible
solution for k = 2; (pure) SOS polynomial has k = 1.

Software: SeDuMi, YALMIP, SOSTOOLS, SparsePOP, SDPT3,
VSDP, GloptiPoly
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Exact Certification of Optima via Rational SOS

Problems with sum-of-squares certificates:

I Numerical sum-of-squares yields “≥ 0” approximately!

I Exact optimum is high-degree/large-height algebraic number.

We certify a rational lower bound r / r∗ = infx∈Rn f (x) (of small size) via a
rational matrix W so that the following conditions hold exactly:

f (X)− r = md(X)T ·W ·md(X),

W � 0, W T =W
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Rationalizing Sum-Of-Squares: “Easy Case” W � 0

[Harrison’07; Peyrl, Parrilo’07, ’08; Kaltofen, Li, Yang, Zhi,’08,’09]

Wadjust

X

convert to rational

WNewton

project on hyperplane

symmetric positive semidefinite matrices
W

Newton iteration

WSDP

where the

affine linear hyperplane is given by

X = {A | AT = A, f (X)− r = md(X)T ·A ·md(X)}



Rationalizing a Sum-Of-Squares: “Hard Case” W � 0

[Kaltofen, Li, Yang, Zhi,’08,’09, Monniaux, Corbineau’11]

recover an integer or rational matrix

Xsymmetric positive semidefinite matrices

WNewton

WadjustWSDP Newton iteration

W

where the affine linear hyperplane is tangent to the cone boundary of
singular W : real optimizers, fewer squares, missing terms



Rationalizing a Sum-Of-Squares

From “Hard Case” to “Easy Case”:

I Reducing the dimension of W by removing extra monomials.

I Computing the minimal number of squares by matrix completion
method.

I Computing a hyperplane X ⊂ RN such that

S(W )={x ∈ RN |W (x)� 0} ⊂X
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Siegfried Rump’s 2006 Model Problem

For n = 1,2,3, . . . compute the global minimum µn :

µn = min
P,Q

‖PQ‖2
2

‖P‖2
2‖Q‖2

2

s. t. P(Z) =
n

∑
i=1

piZi−1,Q(Z) =
n

∑
i=1

qiZi−1 ∈ R[Z]\{0}

I n≤ 8 using Gröbner bases by Mohab Safey El Din.

I n≤ 8 using COSY package by Kyoko Makino.

I n≤ 12 using SOSTOOLS and INTLAB by Siegfried Rump.
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Siegfried Rump’s 2006 Model Problem

Let f (X) = ‖PQ‖2
2, g(X) = ‖P‖2

2‖Q‖2
2,

µ?
n := sup

r∈R,W
r

s. t. f (X)− rg(X) = md(X)T ·W ·md(X)
W � 0,W T =W



I X = {p1, . . . , pdn/2e}∪{q1, . . . ,qdn/2e}, because P,Q achieving µn must
be symmetric or skew-symmetric. [Rump and Sekigawa’06]

I [Kaltofen, Li, Yang, Zhi’08].

I md(X) is a monomial vector restricted to piq j.

I Exact W has corank 1 when n is even and corank 2 when n is odd.

I Certify a slightly perturbed lower bound with a W of full rank.
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Certified Lower Bounds by Multiple Precision SDP

[Kaltofen,Li,Yang,Zhi’12, Guo’10]

n k # iter prec. secs/iter lower bound rn upper bound

4 2 50 4 × 15 0.71 0.01742917332143265288 0.01742917332143265289
5 1 50 4 × 15 2.03 0.00233959554815559112 0.00233959554815559113
6 2 50 4 × 15 1.76 0.00028973187527968192 0.00028973187527968193
7 1 75 5 × 15 11.36 0.00003418506980008284 0.00003418506980008285
8 2 75 5 × 15 12.49 0.00000390543564975572 0.00000390543564975573
9 1 75 5 × 15 84.12 0.43600165391810484613e–06 0.43600165391810484613e–06
10 2 75 5 × 15 92.79 0.47839395687709759327e–07 0.47839395687709759327e–07
11 1 85 5 × 15 622.03 0.51787490974469905331e–08 0.51787490974469905331e–08
12 2 85 5 × 15 634.48 0.55458818311631347611e–09 0.55458818311631347612e–09
13 1 100 5 × 15 3800.0 0.58866880811866093130e–10 0.58866880811866093130e–10
14 2 100 5 × 15 3800.00 0.62024449920539050219e–11 0.62024449920539050220e–11
15 1 120 6 × 15 15000.00 0.64943654185809512880e–12 0.64943654185809512880e–12
16 2 120 6 × 15 23000.00 0.67636042558221379057e–13 0.67636042558221379058e–13
17 1 70 6 × 15 72400.00 0.70112631896355325150e–14 0.70112631970143741585e–14
18 2 50 6 × 15 95720.00 0.71154604865069396988e–15 0.72383944796943875862e–15



Rationalizing a Sum-Of-Squares

From “Hard Case” to “Easy Case”:

I Reducing the dimension of W by removing extra monomials.

I Computing the minimal number of squares by matrix completion
method.



Example: Voronoi2 [Everett,Lazard,Lazard,Safey El Din’07]

Voronoi2(a,α,β ,X ,Y ) has 253 monomials

a12
α

6 +a12
α

4−4a11
α

5Y +10a11
α

4
β X + · · ·︸︷︷︸

248 terms

+20a10
α

2X2.

I The singular values of the computed Gram matrix W118×118:

196,152.78,152.29,107.36,68.64,61.48,43.05,42.58,25.06, · · ·

I Compute the truncated Cholesky decomposition of W ≈ L̂L̂T w.r.t.
tolerance 43 and obtain

Voronoi2 ≈ g2
1 +g2

2 + · · ·+g2
7 (∗)

I Apply Gauss-Newton iterations to refine (∗), after 30 iterations, we
truncate L̃ L̃T to an integer matrix W = LDLT :

Voronoi2 = f2
1 +

1
16

f2
2 + f2

3 +
1
28

f2
4 +

7
27

f2
5,

where fi ∈Q[a,α,β ,X ,Y ].
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Sum of Minimal Number of Squares

Represent f (X1, . . . ,Xn) as a sum of minimal number of squares of
polynomials in Q[X1, . . . ,Xn]

∃ minimal number of ui : f (X1, . . . ,Xn) =
min k

∑
i=1

ui(X1, . . . ,Xn)
2

m
∃ W � 0 of minimal rank : f = md(X1, . . . ,Xn)

T ·W ·md(X1, . . . ,Xn)

=
min rank W

∑
i=1

(
√

Di,i Li ·md(X1, . . . ,Xn))
2

Note: SDP solvers based on interior point method return matrices with
maximum rank [Klerk, Roos and Terlaky’97].
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Low-rank Gram Matrix Completion Problem

Find a Gram matrix of the lowest rank satisfying
f = md(X)T W md(X)

Rank Minimization:

min rank(W )
s. t. A(W ) = b

W � 0,W T =W

Nuclear Norm Minimization:

min ‖W‖∗
s. t. A(W ) = b

W � 0,W T =W

I A : Sn→ Rm, b ∈ Rm.

I ‖W‖∗ = Σiσi, σi = i-th singular value of the matrix W .
When W � 0, ‖W‖∗ = Σiλi = Tr(W ), λ = i-th eigenvalue of W .



Why is the Nuclear Norm Relevant?

I Bad nonconvex problem =⇒ Convex problem!

I Nuclear norm is the ”best” convex approximation of the rank function.
[Fazel’s PhD thesis’02]

I [Parrilo’10]



Nuclear Norm Regularized Least Squares

Nuclear norm minimization:

min ‖W‖∗
s. t. A(W ) = b

W � 0,W T =W

The constraints A(W ) = b can be relaxed, resulting the nuclear norm
regularized LS problem

min
W∈Sn

+

µ‖W‖∗+
1
2
‖A(W )−b‖2

2

where Sn
+ is the set of symmetric positive semidefinite matrices and µ > 0

is a given parameter.



Modified Fixed Point Iterative Method

Starting with X0 = 0, inductively define for k = 1,2, . . .


Zk = Xk + tk−1−1

tk
(Xk−Xk−1)

Y k = Zk− τkA∗(A(Zk)−b)
Xk+1 = Tτµ(Y k)

tk+1 =
1+
√

1+4t2
k

2

where A∗ : Rm→ Sn is the adjoint of A and τ,µ > 0.

Matrix Thresholding Operator: Assume W = Q ·Λ ·QT , where
Λ = diag(λ1, . . . ,λn). For any ν ≥ 0,

Tν(W ) := Q ·diag({λi−ν}+) ·QT ,

where t+ = max(t,0).

We only compute eigenvalues which are larger than τµ.
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Exact SOS certificates: md(x) is dense

Examples Results Gauss-Newton iteration
n/r p FR solvers rank θ time (s) rank θ time (s)

200/ 5 1221 0.81 AFPC-BB 14 3.63e+0 1.07e+1 5 6.95e-10 4.02e+2
SDPNAL 21 2.83e+0 1.06e+1 5 6.91e-10 5.57e+2
SeDuMi 200 2.58e-1 5.56e+1 5 7.18e-10 1.10e+3

300/ 5 1932 0.77 AFPC-BB 14 2.23e+1 2.32e+1 5 1.38e-9 5.61e+2
SDPNAL 25 2.51e+0 2.69e+1 5 1.08e-9 7.05e+2
SeDuMi 300 4.75e-1 2.62e+2 5 1.13e-9 6.89e+2

400/ 5 2610 0.76 AFPC-BB 15 1.25e+1 6.23e+1 5 5.83e-7 1.22e+3
SDPNAL 27 2.09e+0 8.69e+1 5 2.34e-8 5.03e+3
SeDuMi 399 3.38e-1 4.88e+2 5 4.39e-8 5.03e+3

500/ 5 5124 0.48 AFPC-BB 17 2.48e+1 5.33e+1 5 1.48e-5 7.92e+3
SDPNAL 38 6.33e+0 2.53e+2 5 4.91e-8 1.84e+4
SeDuMi – – – – – –

SDPNAL: [Zhao,Sun,Toh’10]; SeDuMi: [Sturm’99, Löfberg’04];
n the dimension, r the rank, p the number of linear constrains;
FR = r(2n− r+1)/2p degrees of freedom ratio;
θ = ‖ f (x)−md(x)

T ·W ·md(x)‖2 the error.



Exact SOS certificates: md(X) is sparse

Problems AFPC-BB SDPNAL
n r p FR rank θ time (s) rank θ time (s)

500 20 24240 0.40 20 1.50e+1 4.48e+1 113 4.23e+1 6.72e+2
1000 10 27101 0.36 10 2.21e+1 3.70e+2 99 8.80e+1 2.70e+3
1000 50 95367 0.51 50 1.01e+1 6.56e+2 218 9.20e+1 9.92e+3
1500 10 45599 0.32 10 3.31e+1 1.00e+3 121 3.41e+1 3.72e+4
1500 50 122742 0.60 50 1.51e+1 3.84e+3 226 3.79e+1 1.36e+4

For the problem with n = 1500,r = 50, f has 122402 monomials

f = 498w34x4z2−160w31x3y2z3 +58x6z2 + · · ·︸︷︷︸
122399 terms

We can recover the exact SOS certificate without G-N refinement.



Rationalizing a Sum-Of-Squares

From “Hard Case” to “Easy Case”:

I Reducing the dimension of W by removing extra monomials.

I Computing the minimal number of squares by matrix completion
method.

I Computing a hyperplane X ⊂ RN such that

S(W )={x ∈ RN |W (x)� 0} ⊂X



Certificates for Low Dimensionality of S(W)

I Let W ∈ Sn, then S(W) has an empty interior

⇐⇒∃u1, . . . ,us ∈ Rn\{0},s≤ n, s.t.
s

∑
i=1

uT
i ·W ·ui = 0.

I Assume u11 6= 0, let P = [u1,e2, . . . ,en],

W′ = PT ·W ·P =


L1 L2 · · · Ln

L2
... Ŵ

Ln

 .
I For any Li 6= 0, there exists A� 0 s.t. −L 2

i = tr(AW ). Therefore

(a1, . . . ,ak) ∈S(W) =⇒Li(a1, . . . ,ak) = 0

=⇒S(W)⊂X = {L1, . . . ,Ln}

[Klep,Schweighofer’13, Guo,Safey El Din,Zhi’13]
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Infeasibility Certificates of SOS over R[X]

Given y = (yα) ∈ RNn
, for f = ∑

α

fαXα ∈ R[X] = R[X1, . . . ,Xn], define

Ly( f ) := yT vec( f ) = ∑
α

yα fα .

Theorem

[Guo,Kaltofen,Zhi’12] The following are equivalent:

1. f /∈ SOS/SOSdeg≤2e =
{

∑u2
i /∑v2

j | ui,v j ∈ R[X], degv j ≤ e
}

.

2. ∃y′ ∈Qm, s.t. ∀v,u ∈ R[X] with degv≤ e, degu≤ e+(deg f )/2, we
have Ly′(u2)≥ 0 and Ly′( f v2)< 0.

If f = ∑u2
i /∑v2

j with degv j ≤ e, then

0≤ Ly′(∑u2
i ) = ∑Ly′( f v2

j)< 0

which is a contradiction.
A rational hyperplane Ly′ can be obtained by numerical SDP solvers.

Special case: e = 0 [Ahmadi and Parrilo’09]
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Even Symmetric Sextics [Choi et al.1987]

Let Mr(X) =
n
∑

i=1
X r

i , for integer 0≤ k ≤ n−1, we define forms fn,k by
fn,0 = −nM6 +(n+1)M2M4−M3

2 ,

fn,k = (k2 + k)M6− (2k+1)M2M4 +M3
2 , 1≤ k ≤ n−1.

For n = 4,5,6, we can certify that the polynomials

f4,2, f5,2, f6,2 /∈ SOS/SOSdeg≤2

and
f5,3, f6,3, f6,4 /∈ SOS/SOSdeg≤4

To our knowledge, they are the first PSD polynomials which can not be
written as ∑i u2

i /∑ j v2
j with deg∑ j v2

j = 4!



An Ill-Posed Polynomial

Consider polynomial f (X ,Y ) = X2 +Y 2−2XY = (X−Y )2.

∀ε > 0, fε(X ,Y ) = (1− ε
2)X2 +Y 2−2XY

is not SOS. Take x = y =C, fε(x,y) =−ε2C2⇒ inf fε =−∞. Ill-posed!

I For ε = 10−1, 10−2, 10−3, 10−4, SDP solver SeDuMi in Matlab can
numerically detect fε is not SOS. But for ε = 10−5 or smaller, it fails!

I Our method in Maple can give exact certificate of fε being not SOS
for ε = 10−8 or smaller!

[Guo,Kaltofen,Zhi’12]



An Ill-Posed Polynomial

Consider polynomial f (X ,Y ) = X2 +Y 2−2XY = (X−Y )2.

∀ε > 0, fε(X ,Y ) = (1− ε
2)X2 +Y 2−2XY

is not SOS. Take x = y =C, fε(x,y) =−ε2C2⇒ inf fε =−∞. Ill-posed!

I For ε = 10−1, 10−2, 10−3, 10−4, SDP solver SeDuMi in Matlab can
numerically detect fε is not SOS. But for ε = 10−5 or smaller, it fails!

I Our method in Maple can give exact certificate of fε being not SOS
for ε = 10−8 or smaller!

[Guo,Kaltofen,Zhi’12]



An Ill-Posed Polynomial

Consider polynomial f (X ,Y ) = X2 +Y 2−2XY = (X−Y )2.

∀ε > 0, fε(X ,Y ) = (1− ε
2)X2 +Y 2−2XY

is not SOS. Take x = y =C, fε(x,y) =−ε2C2⇒ inf fε =−∞. Ill-posed!

I For ε = 10−1, 10−2, 10−3, 10−4, SDP solver SeDuMi in Matlab can
numerically detect fε is not SOS. But for ε = 10−5 or smaller, it fails!

I Our method in Maple can give exact certificate of fε being not SOS
for ε = 10−8 or smaller!

[Guo,Kaltofen,Zhi’12]



Infeasibility Certificates of SOS over Q[X]

Sturmfels’ question

Let f ∈Q[Y1, . . . ,Yn] s.t. f = g2
1 + · · ·+g2

s (with gi ∈R[Y1, . . . ,Yn]). Do there
exist h1, . . . ,hp ∈Q[Y1, . . . ,Yn] s.t. f = h2

1 + · · ·+h2
p?

Scheiderer’s counter example to Sturmfels’ question (2012):

f = x4 + xy3 + y4−3x2 yz−4xy2 z+2x2 z2 + xz3 + yz3 + z4

has only SOS decompositions over the reals:

f =

(
x2 + y2

α− yz
2
+

1
4

z2 (1+4α)

α

)2

−2α

(
xy− 1

4
y2

α
+

1
2

xz
α

+ yzα− z2

2

)2

,

where α is a negative real number satisfies −1−8α +8α3 = 0.
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Scheiderer’s Counter Example

Suppose
f = [x2,xy,y2,xz,yz,z2] ·W · [x2,xy,y2,xz,yz,z2]T ,

the Gram matrix W of f is a 6×6 symmetric matrix

W =



1 0 X1 0 −3
2
−X2 X3

0 −2X1
1
2

X2 −2−X4 −X5

X1
1
2

1 X4 0 X6

0 X2 X4 −2X3 +2 X5
1
2

−3
2
−X2 −2−X4 0 X5 −2X6

1
2

X3 −X5 X6
1
2

1
2

1


We have S(W)={x ∈ R6 |W(x)� 0} 6= /0 but S(W)∩Q6 = /0.



Find rational points in S(W) [Guo,Safey El Din,Zhi’13]

Consider W = W0 +X1W1 + · · ·+XkWk � 0, W0, . . . ,Wk are (D×D)
symmetric matrices with entries in Q of bit size ≤ τ.

I Decide if S(W)∩Qk 6= /0 within (kτ)O(1)2O(min(k,D)D2)DO(D2) bit
operations.

I Return rational points in S(W) whose coordinates have bit length

≤ τO(1)2O(min(k,D)D2).

Certificates for SOS decompositions over Q [Guo,Safey El Din,Zhi’13]

Let f ∈Q[Y1, . . . ,Yn] with coefficients of bit size ≤ τ and deg( f ) = 2d.

I Decide if f = ∑ f 2
i , fi ∈Q[Y1, . . . ,Yn] within τO(1)2O(M(d,n)3) bit

operations. (τO(1)M(d,n)M(d,n)6
in [Safey El Din,Zhi’10])

I The bit lengths of rational coefficients of the fi’s: τO(1)2O(M(d,n)3).

I “Computer-validation” for Scheiderer’s counter example.
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Full Dimensional Case

Let W = W0 +X1W1 + · · ·+XkWk where W0, . . . ,Wk
are (D×D) symmetric matrices with entries in Q.

I characteristic polynomial of W:
yD +mD−1yD−1 + · · ·+m0

I Ψ = {(−1)(i+D)mi > 0, 0≤ i≤ D−1}

Critical point method (Grigoriev, Vorobjov, Canny, Heintz,
Solerno, Renegar, Basu, Pollack, Roy, Safey El Din)

Scheiderer’s counter example

Ψ have 6 inequalities with 6 indeterminates, apply the routine
HasRealSolutions in RAGLib (Safey El Din) to compute

U = OpenDecision(Ψ).

The set U is empty =⇒ S(W) is not full dimensional.
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Low Dimensional Case

Certificates for low dimensionality of S(W) [Klep,Schweighofer’13]

I Assume S(W) has an empty interior, @ u ∈ RD\{0} s.t. W ·u = 0

⇐⇒∃u1, . . . ,us ∈ RD\{0},1≤ s≤ D,s.t.
s

∑
i=1

uT
i ·W ·ui = 0.

I Assume u11 6= 0, let P = [u1,e2, . . . ,eD],

W′ = PT ·W ·P =


L1 L2 · · · LD

L2
... Ŵ

LD

, L1, . . . ,LD ∈ R[X1, . . . ,Xk],

I (a1, . . . ,ak) ∈S(W) =⇒Li(a1, . . . ,ak) = 0, i = 1, . . . ,D.



Scheiderer’s Counter Example (II)

I Using the routine RUR [Rouillier’99], we get a real algebraic vector

u =

[
−1+

1
2

ϑ +
1
2

ϑ
4,

ϑ 3

2
+

1
2
,ϑ 2,−2ϑ +

1
2

ϑ
2 +

1
2

ϑ
5,ϑ ,1

]T

s.t. uT ·W ·u = 0, ϑ
6−4ϑ

2−1 = 0.

I Construct P = [u,e2, . . . ,e6], W′ = PT ·W ·P, real linear forms
L1, . . . ,L6 are the entries of the first column of W′:

L1
L2
L3
L4
L5
L6

=



0
1
2 X2 ϑ 5 + · · · −X1−X5
1
2 X4 ϑ 5 +1

2 X1 ϑ 4 + . . . −X1 +X6 +
1
4

(1−X3)ϑ 5 + . . . +1
2 +

1
2 X2

1
2 X5 ϑ 5 −(3

4 +
1
2 X2)ϑ 4 + . . . +1+X2− 1

2 X4
1
4 ϑ 5 +1

2 X3 ϑ 4 + . . . −X3 +1− 1
2 X5
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Rational Linear Forms

Let Li = li,δ−1(X1, . . . ,Xk)ϑ
δ−1 + · · ·+ li,0(X1, . . . ,Xk), we have

{x ∈Qk |Li(x) = 0} 6= /0 ⇐⇒ {x ∈Qk | li,0(x) = . . .= li,δ−1(x) = 0} 6= /0

[Guo,Safey El Din,Zhi’13]

I Set L j = [l1, j, . . . , lD, j]
T , [L0, . . . ,Lδ−1] = 0 has no solutions

=⇒ S(W) has no rational solutions!

I Otherwise, apply Gaussian elimination, we obtain

W′ −→
[

0 0

0 W̃

]
, S(W̃)∩Qk′ = proj(S(W)∩Qk), k′ ≤ k.

A computer validation for Scheiderer’s counter example

L5 =

[
0,

1
2

X2,
1
2

X4, 1−X3,
1
2

X5,
1
4

]T

,

L5 = 0 has no solutions =⇒ S(W) has no rational solutions!
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T , [L0, . . . ,Lδ−1] = 0 has no solutions

=⇒ S(W) has no rational solutions!

I Otherwise, apply Gaussian elimination, we obtain

W′ −→
[

0 0

0 W̃

]
, S(W̃)∩Qk′ = proj(S(W)∩Qk), k′ ≤ k.

A computer validation for Scheiderer’s counter example

L5 =

[
0,

1
2

X2,
1
2

X4, 1−X3,
1
2

X5,
1
4

]T

,

L5 = 0 has no solutions =⇒ S(W) has no rational solutions!



SOS Certificates for Lower Bounds: Constraint Case

Let V ⊂ Rn be a real algebraic variety defined by

f1(X) = · · ·= fp(X) = 0

with F = ( f1, . . . , fp)⊂Q[X1, . . . ,Xn].

Goal: certify lower bounds on f ∗ = infx∈V f (x).

I When f ∗ is reached over V [Demmel, Nie, Powers, Sturmfels]:

f − f ∗+ ε = SOS mod F,MaxMinors(jac([ f ,F]))

I When f ∗ is reached at infinity (generalized critical values):

I [Schweighofer’06]: Gradient tentacle

I [Hà,Pham’08,Hà,Pham’10]: Truncated tangency variety

I [Greuet,Guo,Safey El Din,Zhi’12]: Modified polar variety
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Polar Varieties [Bank, Giusti, Heintz, Mbakop, Pardo, Safey, Schost]

Let Wn−i+1 be zero-set of F and MaxMinors(jac(F,X≥i+1)). In generic
coordinates, the polar variety Wn−i+1 is the critical locus of

πi : (X1, . . . ,Xn)−→ (X1, . . . ,Xi)

restricted to V (F).
I codimWn−i+1 = n− i+1 and dim(Wn−i+1∩V (X1, . . . ,Xi−1)) = 0

I

n−s⋃
i=1

(Wn−i+1∩V (X1, . . . ,Xi−1))∩Rn = /0⇔V ∩Rn = /0

Modified Polar Varieties [Greuet,Guo,Safey El Din,Zhi’12]

Let Wn−i+1 be zero-set of F,MaxMinors(jac([ f ,F],X≥i+1))

I W =
⋃

Wn−i+1∩V (X1, . . . ,Xi−1) has dimension 1
I f (V ∩Rn) = f (W ∩Rn)
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Polar Varieties: Example

I f = x, g = x2 + y2 +(z−1)2−1,

I V =V (g).

Polar Varieties.

I W3 =V → dim2;

I W2 → dim1
→ same extrema

I W3 → dim0
→ same extrema

→ f (V ∩Rn) and f (Wi∩Rn): same extrema

x

y

z
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Existence of SOS certificates
Asymptotic values over S: {y ∈ R |∃xk ⊂ S, ‖xk‖→ ∞, f (xk)→ y}

Theorem (Schweighofer 2006)

f ,h1, . . . ,hm ∈ R[X1, . . . ,Xn], S = {x ∈ Rn |h1(x)≥ 0, . . . ,hm(x)≥ 0} and

1. f > 0 over S and f bounded over S;

2. asymptotic values over S → finite subset of ]0,+∞[.

Then
f = ∑

δ∈{0,1}m

SOS hδ1
1 · · ·h

δm
m

Point 2 → OK if dimS = 1.

Modified Polar Varieties → W of dimension 1, f (V ∩Rn) = f (W ∩Rn)

Existence Theorem (Greuet,Guo,Safey El Din,Zhi’12)

Let B > f ?, up to a generic linear change of coordinates

f − f ?+ ε = SOS+SOS(B− f ) mod I (W ) in R[X1, . . . ,Xn]
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Numerical Instabilities Coming from Asymptotic Values

Consider the problem f ∗ = infx,y∈R f (x,y) := (1− xy)2 + y2,

sup
r∈R

r

f (X)− r ≡ md1(X)T ·W ·md1(X)+md2(X)T ·V ·md2(X) · (M− f ) mod 〈 ∂ f
∂x
〉

W � 0, W T =W, V � 0, V T =V.


where md1(X) = md2(X) := [1,x,y,x2,xy,y2].

It dual problem is:

inf
yα∈R

∑
α

fαyα , P� 0, Q� 0,

P =


y0,0 · · · · y0,2
y1,0 · · · · y1,2
y0,1 · · · · y0,3
y2,0 · · · · y2,2
y1,1 · · · · y1,3
y0,2 · · · · y0,4

 Q =


4y0,0 + y1,1− y0,2 · · · 5y1,1− y0,2 ·
4y1,0− y0,1 + y2,1 · · · 5y2,1− y0,1 ·

5y0,1− y0,3 · · · 5y0,1− y0,3 ·
y3,1− y1,1 +4y2,0 · · · 5y3,1− y1,1 ·

5y1,1− y0,2 · · · 5y1,1− y0,2 ·
5y0,2− y0,4 · · · 5y0,2− y0,4 ·
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Unbounded Moment Matrices

Denote the optimal point p∗ = (x∗,y∗) of f = (1− xy)2 + y2,

I x∗y∗→ 1 and y∗→ 0 =⇒ x∗iy∗ j→ ∞ with i > j;

I The moment yi, j = x∗iy∗ j is a minimizer of the dual problem;

I yi, j→ ∞ with i > j;

I The moment matrices P and Q are unbounded at the minimizer.
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Exploit the Sparsity Structure

I Reduce to md1 = [1,y,xy,y2], md2 = [1,y,xy]

P =


y0,0 y0,1 y1,1 y0,2
y0,1 y0,2 y1,2 y0,3
y1,1 y1,2 y2,2 y1,3
y0,2 y0,3 y1,3 y0,4


Q =

 4y0,0 + y1,1− y0,2 5y0,1− y0,3 5y1,1− y0,2
5y0,1− y0,3 5y0,2− y0,4 5y0,1− y0,3
5y1,1− y0,2 5y0,1− y0,3 5y1,1− y0,2



I All yi, j with i > j are removed, P,Q are bounded at (x∗,y∗);
I The lower bound computed is

f ∗2 ≈−4.029500408×10−24

I The certified lower bound is

f ∗2 =−4.029341206383157355520229568612510632×10−24
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Verified Error Bounds for Real Solutions

Let F(x) = [ f1, . . . , fm]
T ∈Q[x] =Q[x1, . . . ,xn], I = 〈 f1, . . . , fm〉, V ⊂ Cn be

the algebraic variety defined by:

f1(x1, . . . ,xn) = · · ·= fm(x1, . . . ,xn) = 0.

We verify the existence of real solutions on V ∩Rn

I Zero dimensional case: regular or singular solutions

I Positive dimensional case: radical ideals
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Verified Error Bounds for Isolated Regular Solutions

I [Krawczyk’1969, Moore’1977, Rump’1983]
Let F : Rn→ Rn, x̃ ∈ Rn, and X ∈ IRn with 0 ∈ X and A ∈ Rn×n. Let
M ∈ IRn×n be given s.t.

{∇ fi(y) : y ∈ x̃+X} ⊆Mi,:, i = 1, . . . ,n.

Denote by In the n×n identity matrix and assume

−AF(x̃)+(In−AM)X⊆ int(X).

There is a unique solution x̂ ∈ x̃+X satisfying F(x̂) = 0 and every
matrix M̃ ∈M is nonsingular.

I Software: verifynlss in INTLAB [Rump’1999].

I Limited to: square systems, isolated regular solutions.
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Verified Error Bounds for Isolated Singular Solutions

An isolated solution x̂ is a singular solution of F(x) = 0 iff

rank(Fx(x̂))< n.

I It is hard to verify that F(x) has a singular solution.

a singular solution
perturbations−−−−−−−→ a cluster

I It is not hard to verify that a perturbed system F̃(x) within a small
verified bound has a singular solution.
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Verified Error Bounds for Isolated Singular Solutions

I [Kanzawa,Oishi’99]: the existence of imperfect singular solutions of
nonlinear equations.

I [Rump,Graillat’09]: the existence of a double root of a perturbed
system.

I [Mantzaflaris,Mourrain’11]: the existence of a multiple root of a
nearby system with a given multiplicity structure, depends on the
accuracy of the given approximate multiple root.

I [Li and Zhi’12,14]: the existence of breadth-one singular solutions
and the existence of a singular solution in general case of a perturbed
system.
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Deflation Technique

Let x̂ be a singular solution of F(x) = 0 with r = rank(Fx(x̂))< n.

Minors

x̂ is a solution of{
F(x) = 0,
det(A) = 0,∀A ∈ Fr+1

x ,

where Fr+1
x denotes the set of all

(r+1)× (r+1) minors of Fx.

Null Space

There exists a unique λ̂ such
that (x̂, λ̂ ) is a solution of

F(x) = 0,
Fx(x)Bλ = 0,

h∗λ = 1,

where B ∈ Cn×(r+1), h ∈ Cr+1.

Deflation ] to derive a regular solution is strictly < µ [Leykin et al.’06].

Remark

The deflated regular system is an over-determined system!
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Verification of Breadth-one Singular Solutions

I Suppose corank(Fx(x̂)) = 1. Let µ be the multiplicity and
b0,b1, . . . ,bµ−2 be smoothing parameters. Construct a square and
regular system

G(x,b,a) =


F0(x,b) = F(x)+

(
∑

µ−2
ν=0

bν xν
1

ν!

)
e1

F1(x,b,a1,2, . . . ,a1,n)
...

Fµ−1(x,b,a1,2, . . . ,a1,n, . . . ,aµ−1,2, . . . ,aµ−1,n)

 ,

in n︸︷︷︸
x

+µ−1︸ ︷︷ ︸
b

+(µ−1)(n−1)︸ ︷︷ ︸
a

= nµ variables and

Fk(x,b,a1,2, . . . ,ak,n) :=
k−1

∑
j=1

j
k
·Fk− j,x ·a j +Fx ·ak,

a1 = (1,a1,2, . . . ,a1,n)
T , ai = (0,ai,2, . . . ,ai,n)

T , i = 2, . . . ,µ−1.

I Suppose x̂, â and b̂ are verified inclusions for G, then x̂ is a
breadth-one singular root of F̃(x, b̂) of multiplicity µ [Li,Zhi’12].
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I Suppose x̂, â and b̂ are verified inclusions for G, then x̂ is a
breadth-one singular root of F̃(x, b̂) of multiplicity µ [Li,Zhi’12].



Verification of Breadth-one Singular Solutions

I The system F = {x2
1x2− x1x2

2,x1− x2
2} has a singular solution (0,0) of

multiplicity 4 [Rump, Graillat’09].

I Construct an augmented system

G(x,b,a) =



x2
1x2− x1x2

2−b0−b1x2− b2
2 x2

2
x1− x2

2
2a1x1x2−a1x2

2 + x2
1−2x1x2−b1−b2x2

a1−2x2
a2

1x2 +2a1x1−2a1x2 +2a2x1x2−a2x2
2−x1−b2

a2−1
a2

1 +a1a2x2−a1 +2a2x1−2a2x2 +2a3x1x2−a3x2
2

a3


.
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Verification of Breadth-one Singular Solutions

I Applying INTLAB function verifynlss to G with

x̃ = (0.002,0.003,0.002,1.001,−0.01,0,0,0),

we prove that

F̃(x, b̂) =

(
x2

1x2− x1x2
2−b̂0− b̂1x2− b̂2

2 x2
2

x1− x2
2

)

for
−10−14 ≤ b̂i ≤ 10−14, i = 0,1,2

has a 4-fold breadth-one root x̂ within

−10−14 ≤ x̂i ≤ 10−14, i = 1,2.



Verified Error Bounds for Singular Solutions (General Case)

I Let x̂ ∈ Rn be an isolated singular solution of F(x) = 0 with

rank(Fx(x̂)) = n−d, (1 < d ≤ n).

I Let Fc
x (x̂) be obtained from Fx(x̂) by deleting its c-th columns,

s.t. rank(Fc
x (x̂)) = n−d, for c = {c1,c2, . . . ,cd}.

I Let k = {k1,k2, . . . ,kd} be an integer set, eki is the ki-th unit vector

s.t. rank(Fc
x (x̂),ek1 ,ek2 , . . . ,ekd ) = n.

I We introduce d smoothing parameters b = (b1, . . . ,bd) and consider

G(x,λ ,b) =
{

F(x)−∑
d
i=1 bieki = 0,
Fx(x)v1 = 0,

where v1 = (λ1, . . . , 1
c1
, . . . , 1

cd
, . . . ,λn−d)

T
n .

Therefore, (x̂, λ̂ ,0) is an isolated solution of G(x,λ ,b) = 0. 0 0 0
0 0 0
0 −1 1

⇒
 0 1 0

0 0 1
1 0 0

⇒ d = 2,
c = {1,2},
k = {1,2}.
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Verified Error Bounds for Isolated Singular Solutions

I In general, we construct a square and regular system via deflations
[Li,Zhi’12,13] 

F̃(x,b) = 0,
F̃x(x,b)v1 = 0,

...

where
F̃(x,b) = F(x)−X0b0−X1b1−·· ·−Xs−1bs−1,

Xk consists of 1
k! · x

k
c(k)(i) · ek(k)(i), i = 1, . . . ,d(k).

I Compute inclusions for x̂, b̂, then x̂ is an isolated singular solution of
F̃(x, b̂).

I Software: verifynlss2 by Rump for verifying double roots.
viss by Li and Zhu for verifying arbitrary singular roots.
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Verified Error Bounds for Isolated Singular Solutions

The system F has (0,0,0,0) as a 131-fold isolated zero [Dayton and
Zeng’05]

F = {x4
1− x2x3x4,x4

2− x1x3x4,x4
3− x1x2x4,x4

4− x1x2x3}.

I Starting from (0.003,0.010,0.003,0.007), by deflation we derive

F̃(x,b) =


x4

1− x2x3x4−b1−b5x1
x4

2− x1x3x4−b2−b6x2
x4

3− x1x2x4−b3−b7x3
x4

4− x1x2x3−b4−b8x4

 .

I Apply INTLAB function verifynlss, it yields inclusions

−10−321 ≤ x̂i, b̂ j ≤ 10−321,

which proves that F̃(x, b̂) (|b̂ j| ≤ 10−321, j = 1,2, . . . ,8) has an
isolated singular solution x̂ within |x̂i| ≤ 10−321, i = 1,2,3,4.
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Verification Method: Positive-dimensional Case

Reduce positive-dimensional cases to zero-dimensional cases.

I A naive method: fixing n−m variables

I Critical point method: adding minors

I Low-rank moment matrix completion method: using approximate
solutions and null vectors
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A Naive Method: Fixing n−m Variables

Decide attainableness of Voronoi2 = 0 [Greuet, Safey El Din’11].

I Fixing four variables, Voronoi2(â, α̂, β̂ , X̂ ,Y ) ∈Q[Y ] has no real
solutions. Why?

I Voronoi2 is a sum of 5 squares Q[a,α,β ,X ,Y ], 0 is attained on

{Y +aα,2aβX +4a3
βX +4a4

α
2 +4a4 +4a2

α
2 +4a2−a2X2−β

2}

and

{aX +β ,−4β
2−4−2a3

αY −4aαY +a4
α

2 +a2Y 2−4a2
β

2−4a2}

[Kaltofen,Li,Yang,Zhi’08]

I We can fix at most three variables, e.g. a,α,β .
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Critical Point Method: a Radical & Equidimensional Ideal

Choose a point u ∈ Rn, g = 1
2(x1−u1)

2 + · · ·+ 1
2(xn−un)

2 and

Jg(F) =


∂ f1
∂x1

. . . ∂ fm
∂x1

∂g
∂x1

...
...

...
∂ f1
∂xn

. . . ∂ fm
∂xn

∂g
∂xn

 .
C(V,u) = {x̂ ∈V (I), rank(Jg(F(x̂))≤ n−d}.

Theorem (Aubry,Rouillier,Safey’02)

1. C(V,u) meets every semi-algebraically connected component of V ∩Rn;

2. C(V,u) =Vsing∪V0,u, a variety defined by n−d +1 minors ∆u,d(F) of
Jg(F) and dim(C(V,u))< dim(V ).

F ←− F ∪∆u,d(F)
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Example: f (x1,x2) = x2
1− x2 (x2 +1)(x2 +2)

[Mork, Piene’08]

I Choose a random point u = [1,1]T , define h by the critical point
method: h = 16x1 x2 +6x2

2x1−6x2
2−12x2−4

I Applying verifynlss to { f ,h} and 3 roots computed by HOM4PS-2.0,
we prove that f has 3 verified real solutions

x1 x2

−0.3656608±1.0×10−15 −1.9248972±5.6×10−16

0.1962544±2.6×10−16 −1.0385732±2.2×10−16

1.2624706±3.3×10−16 0.4490963±1.1×10−16
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The Low-rank Moment Matrix Completion Method

Given a truncated sequence y = (yα)α∈Nn
2t
∈ RNn

2t , if ∃ a measure µ,
yα =

∫
xαdµ, then y is called a truncated moment sequence. Consider the

truncated moment matrix

Mt(y) := (yα+β )α,β∈Nn
t

with rows and columns indexed by monomials xα of degree ≤ t.
For instance, in R2

M1(y) =


y00 | y10 y01
− − − −

y10 | y20 y11
y01 | y11 y02





The Low-rank Moment Matrix Completion Method

Similarly, given g(x) = ∑γ∈Nn gγ xγ ∈ R[x], the localizing matrix with respect
to g is also indexed by monomials xα of degree ≤ t

Mt(gy) :=
(

∑
γ∈Nn

gγ yα+β+γ

)
, α,β ∈ Nn

t .

For instance, in R2, with g(x1,x2) = 1− x2
1− x2

2,

M1(gy) =

 1− y20− y02 y10− y30− y12 y01− y21− y03
y10− y30− y12 y20− y40− y22 y11− y31− y13
y01− y21− y03 y11− y31− y13 y02− y22− y04



Note that, ∀ f ∈ R[x], deg( f )≤ t−2d j, d j = ddeg(g j)/2e,

g j = 0 =⇒ f 2g j = 0 =⇒Mt−d j(g j y) = 0, j = 1, . . . ,s1,

g j ≥ 0 =⇒ f 2g j ≥ 0 =⇒Mt−d j(g j y)� 0, j = s1 +1, . . . ,s2.
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The Low-rank Moment Matrix Completion Method

I Apply MMCRSolver [Ma, Zhi’12] for finding an approximate solution x̃
min 1
s. t. f1(x) = 0,

...
fm(x) = 0.

=⇒


min ||Mt(y)||∗
s. t. y0 = 1,

Mt(y)� 0,
Mt−d j( f j y) = 0,1≤ j ≤ m

I If rank(Fx(x̃)) = n−d, choose a random vector λ :

F(x)←− F(x)∪{Fx(x)λ −Fx(x̃)λ}

I If rank(Fx(x̃))< n−d, compute a null vector v of Fx(x̃):

F ←− F(x)∪Fx(x)v
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Example (continued)

I MMCRSolver yields one approximate real solution

x̃ = [3.671518×10−8,−0.999902]T .

I Choose a random vector λ = [0.715927,−0.328489]T , let
g = 1.431854x1 +0.985467x2

2 +1.970934x2 +0.985467.

I Applying verifynlss to { f ,g}, f has a verified real solution within the
inclusion

x1 x2

4.3211387×10−8±2.7×10−15 −1±2.2×10−15
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Dense Random Hypersurfaces

verifyrealrootpm verifyrealrootpc HasRealSolutions
Ex var deg

time sol time sol time sol

1 2 4 2.5 1 2.8 3 0.040 4

2 4 4 4.5 2 17.4 3 8.3 14

3 5 4 8.8 2 21.5 3 665.5 23

4 6 4 14.7 2 9.2 3 780 32

5 11 4 259 6 − − − −
6 2 6 2.5 1 9.6 4 0.07 4

7 3 6 8.1 2 17.1 4 6.96 11

8 4 6 12.8 3 16.5 4 − −
9 3 8 17.0 3 18.3 5 174 16

10 4 8 69.0 5 − − − −

HasRealSolutions in RAGLib implemented by Safey El Din.
− denotes it is out of memory and no solutions are found.



Positive-dimensional Radical Ideals

verifyrealrootpm verifyrealrootpc HasRealSolutions
system varctrsdeg

time sol time sol time sol

curve0 2 1 12 9.28 34 10.8 44 0.30 12

butcher 4 2 3 3.41 1 319 30 0.89 7

gerdt2 5 3 4 4.82 1 506 31 0.27 6

hairer1 8 6 3 2.06 1 1.25 1 1.44 4

lanconelli 8 2 3 5.38 1 1.48 2 0.78 1

geddes2 5 4 6 18.9 1 5.43 11 1200 1

birkhoff 4 1 10 127 14 7.72 7 31.2 6

Voronoi2 5 1 18 19.9 14 587 14 211 1

4 denotes the singular solutions verified by verifynlss2 or viss



Existence of Real Solutions of Semi-algebraic Systems

Let V ⊂ Cn be a semi-algebraic set defined by:

f1(x) = · · ·= fm(x) = 0, g1(x)≥ 0, . . . ,gs(x)≥ 0

fi(x),g j(x) ∈Q[x] =Q[x1, . . . ,xn] for 1≤ i≤ m and 1≤ j ≤ s.

We verify the existence of real solutions on V ∩Rn using low-rank
moment matrix completion method [Ma, Zhi’12]



min 1
s. t. f1(x) = 0,

...
fm(x) = 0,
g1(x)≥ 0,

...
gs(x)≥ 0.

=⇒


min ||Mt(y)||∗
s. t. y0 = 1,

Mt(y)� 0,
Mt−di( fi y) = 0,1≤ i≤ m
Mt−d j(g j y)� 0,1≤ j ≤ s
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The Kissing Number Problems

The Kissing number is defined as the maximal number of non-overlapping
unit spheres that can be arranged such that they each touch another given
unit sphere.



The Kissing Number Problems

For d = 2, n = 6, the problem is reduced to verify{
x2

i + y2
i = 1, 1≤ i≤ 6,

(xi− x j)
2 +(yi− y j)

2 ≥ 1, 1≤ i < j ≤ 6,

has a real solution.

verifyrealrootpm HasRealSolutions
problem vars ]eq ]ineq deg

time sol width time sol

Kissing21 2 1 0 2 0.53 2 6.93e−18 0.015 4
Kissing22 4 2 1 2 5.10 8 1.98e−14 0.171 2
Kissing23 6 3 3 2 21.01 94 1.19e−13 4.851 16
Kissing24 9 4 6 2 62.24 5 2.109e−14 63.54 8
Kissing25 10 5 10 2 413.43 6 8.03e−13 2918 12
Kissing26 16 6 15 2 2671.96 244 4.74e−13 − -



Concluding Remarks

I Symbolic-numeric computation can be used to compute reliable results
faster.

I Huge amount of works to develop at the interface of numeric
computation and symbolic computations.

Announcements:

I The 3rd Workshop on Hybrid Methodologies for Symbolic-Numeric
Computation, August, 2015, Beijing, China.

I SIAM Conference on Applied Algebraic Geometry, August 3-7, 2015,
Daejeon, South Korea.
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