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Grébner bases

Grobner bases and toric ideals

Grébner bases

@ A “very good” set of polynomials

@ keyword: division of a polynomial
(by several polynomials in n variables.)

@ invented by B. Buchberger in 1965.
(“standard bases” H. Hironaka in 1964.)

@ Elimination Theorem for systems of polynomial
equations

@ implemented in a lot of mathematical software

Mathematica, Maple,
Macauley?2, Singular, CoCoA, Risa/Asir, ....



Grébner bases

Grobner bases and toric ideals

Toric ideals
@ Prime ideals generated by binomials
@ Grdbner bases of toric ideals have a lot of application

commutative algebra, algebraic geometry
triangulations of convex polytopes
integer programming

contingency tables (statistics)



Grébner bases

System of linear equations

f2 = X2—X3—2X4 =
f3 = 2X1—|—3X2—X3 =

10 1 3 10 1 3
Slo1 -1 2 |01 12
03 -3 -6 00 0 O

fy = 2f1 + 3h.

{f1 = X1+X3+3xs =

o O o




Grébner bases

Division?

x +1
x—1 ) x?
X2 —x
X
x —1

For example, which monomial in

f=x2+2x1XX3 —3X1 + X3 +5

shoud be the largest?



Grébner bases

Monomial order

Definition
M set of all monomials in the variables xi, ..., x,

A total order < on M, is called a monomial order
if < satisfies the following:

QueM, u#4#1=1<u.
QuvweM, u<v = uw < vw.

_X2 _X3
2
X +1 “A4+x ) o
x—1 ) x° X° =X
X2 —x x°
X x3 —x*

x —1 x*




Grébner bases

Lexicographic order

Example (Lexicographic order (x; > --- > Xy))

X3 X3 x3n s xPixbe xS
a > b1
or
a = b1 and ao > b2
or
a :b1, 32:b2, and as > b3
or

For example,
100
X1 >lex X2 X3

2,2 2
X{ X5 X5 >1ex X1 X2X3X4



Grébner bases

(Degree) Reverse lexicographic order

Example (Reverse lexicographic order (x; > --- > xp))

b def
X131X232 T X;?n >reviex X4 1X£2 000 X,?" <~
n n
Y@ > i b
or
Stia=>",b and a,< b,
or
n n
2/21 a = 2/21 bi, a,=b, and ap_1 < bp_q

For example,
100
X1 <revlex X2 X3

2,72 2
X1 Xo X5 <reviex X1 X2X3X4



Grébner bases

Weight order

Example (Weight order >,)
W:(W1,W2,...,Wn) ER%O

<: a monomial order (for “tie break")

def
XBxZ XA > XD X2 xS

n n
> aw >> bw
i=1 i=1
or

n n
Za,-w,- = Zb,-w,- and x21x2 ... x2 > x2'xP2 ... xbr
i—1 i—

10/75



Grébner bases

Remark

If n =1, then a monomial order is unique.
In fact, if < is a monomial order on monomials in xq, then

xi>1=x>x=xX>x¥=x{>x—= ...
Hence, we have
T<xi<x2<xi<--

If n > 2, then there exist infinitely many monomial orders.

11/75



Grébner bases

Initial monomial

K{x1, ..., Xs]: polynomial ring over a field K (e.g., K = C)

@ The set of all polynomials in variables xi, ..., X,
with coefficients in K.
Fix a monomial order < on K[xq, ..., Xp]-

0#4feK[x,...,Xn)
in(f) : the largest monomial among the monomials in f
the initial monomial of f

Example

>x. lexicographic order (x; > -+ > Xs)
> evlex: FEVErse lexicographic order (x; > - - > Xs)

f:X12+2X1X2X3—3X1 +X§+5

Then, in., (f) = x? and in-._, (f) = x¢

12/75



Grébner bases

Division algorithm

Theorem (Division algorithm)

<> monomial order
O;éf,ghgg,...,gse K[X1,...,Xn]

Then, there existfy, ... fs,r € K[x1, ..., Xy] such that
@ f=hogr+hg+ -+ fgs+r.

@ Ifr # 0, then any monomial in r is divided by none of
in.(g1),...,inc(gs)-
@ Iffi # 0, thenin_(f) > in_(fig;).

ris called a remainder of f w.r.t. {gi,..., s}

13/75



Grébner bases

Example

n = 2, lexicographic order (x > y)
X +y

xy—1 ) X2y +xy% +y>?

Y2 —1 X2y  —x
Xy  +x +y?
xy?

X +y? 4y
y? -1
x +y +1

XCy+xy2+y2=(x+y)xy—1)+1- (2 =1)+x+y+1

14/75



Grébner bases

Example

n = 2, lexicographic order (x > y)
X
X +1
xy—1 ) X2y +xy? +y?
y? -1 X2y  —x

Xy  +x +y?
xy?  —x
2x +y?
y? 1
2X +1

XCy+xy2+yl=x-(xy —1)+(x+1)-(y¥2=1)+2x + 1

15/75



Grébner bases

|deals of polynomial rings

Definition
Let fi,...,fs € K[xq,..., Xy]. Then, we define

(Fiooo o fs) o= {if + -+ hsfs | by € K[Xq, ..., xo]}

ideal generated by f,...,fs € K[x1,..., Xp]-

fi,... s, 01,...,0: € K[x1,...,Xp]
If{fi,....fs) ={(G,...,0), then
fi=0 g1=0
: and : have the same solutions.
fs=0 9:=0

16/75



Grobner bases

Fix a monomial order <.
fi,....fs € K[X1,..., Xy
I={fi,....fs) C K[xq,...,Xp] : ideal

Definition

inc(l) := (in.(f) | 0 # f € I) the initial ideal of /

Definition

{g1,...,9:} C lis a Grébner basis of I w.rt. <
&L in (1) = (inc(gh), - .., in-(g))
<= For any nonzero element f € I,

in_(f) is divided by in_(g;) for some i.

17/75



Grébner bases

Example

Example

f1 :X2+y21 f2:Xy
I = (fi, ), lexicographic order (x > y)

Then, {f;, i} is not a Grébner basis of / since
o f=yfi — xf, = y(x® + y?) — x - xy = y° belongs to /.
@ So, in-(f) = y® belongs to in_(/).
@ in_(f) = y3 is divided by
neither in_(f;) = x2 nor in_(f) = xy.

— In this case, {f, f>, f} is a Grébner basis of /.

18/75



Grébner bases

Grobner bases

Basic properties of a Grébner basis G of an ideal I
@ Always exists.

@ Not unique.

@ G generates /.

@ For any nonzero polynomial f € K[xq, ..., X,
the remainder of f with respect to G is unique.

@ For any nonzero polynomial f € K[x, ..., Xp],

f € | <= the remainder of f with respect to G is 0.

19/75



Special Grobner bases

G =1{91,...,0:}: a Grobner basis of an ideal /

Definition

G is called minimal if each g; is monic and
@ in_(gj) is not divided by in_(g;) if i # /.

G is minimal <= G \ {g;} is not a Grébner basis for Vi.

Definition

G is called reduced if each g; is monic and
@ Any monomial in g; is not divided by in(g;) if i # /.

If we fix an ideal and a monomial order,
then the reduced Grdbner basis exists (and unigque).

20/75



Grébner bases

Example

Example

| = <X1 — X2, X{ —X3>

<1x: lexicographic order

in<]ex(l) = <X1 Y X2>

{X1 — X2, X1 — X3, Xo — X3}: Grdbner basis , not minimal
{X1 — X2, Xo — X3}: minimal Grébner basis , not reduced
{X1 — X3, X2 — X3}: reduced Grobner basis

21/75



Grébner bases

S-polynomial

(0#) f,g € K[x1,...,Xy]
m := LCM(in(f), in-(g))
f=c¢ in(f)+---
g=Cg'iH<(Q)+"'
Then, we define S-polynomial of f and g by
m m
S(f,9) = - f— - )
(1.9)= o~ o ina(g)?

Example
f = XiX4 — XoX3, § = 2X4X7 — X5Xs, <1ex. lEXiCOgraphic order
X1 X4 X7

S(f,g) = XXe (X1Xg4 — XoX3) — XX

(2X4X7 = X5X6)

1
= —XoX3X7 + =X1X5Xp
2 Jo2/75



Buchberger criterion

Theorem

| = <g1,...,gt> C K[X1,...,Xn]
Then, {g1,...,9:} is a Grébner basis of |
—

The remainder of S(g;, g;) with respectto {g1,...,9:} is0
for all i # j.

23/75



Grébner bases

Buchberger algorithm

Input: g1,...,9: € K[xq,. .., Xp], monomial order <
Output: A Grdbner basis G of I = (g4,...,9:) C K[X1,..., X
w.rt. <

Step1. G={g1,..., 0t}

Step 2. Apply Buchberger criterion to G.

Step 3. If it satisfies the condition of the criterion,
then G is a Grébner basis .

If not, then there exists a nonzero remainder.
Add it to G and back to step 2.

24/75



Grobner bases
Example

Example

f=XiX4 — XoX3, § = XaX7 — X5Xs
I={f,g)

lexicographic order (x; > --- > Xxp)
g ={f.g}

S(f,g) = x7f — X19 = X1 XsXe — XoX3X7

A remainder of S(f, g) w.r.t. {f, g} iS X1 XsXe6 — XoX3X7 =: h
G={f.g.h}

S(f, h) = XsXsf — X4h = XoX3X4X7 — XoX3X5Xe = XoX3g

S(g, h) — remainder w.r.t. G is zero.

Thus, {f, g, h} is a Grébner basis of /.

25/75



Grébner bases

Improving the efficiency of

Buchberger algorithm

Proposition

(O #) f7g S K[X'I?"'an]

GCD(in<(f),in<(g)) = 1

—> the remainder of S(f, g) with respect to {f,g} is 0.

@ Strategies for selecting S-polynomials
Sugar Selection Strategy  (in Proc. ISSAC 1991)
— first implemented in CoCoA

@ Homogenization
(to avoid unnecessary intermediate coefficient swells)

26/75



Grébner bases

Elimination theorem

Theorem
0 < m < n: integers

<: monomial order on K|[x, ..

{0} £ 1 C K[x1,...,Xp]: ideal
G: Grobner basis of | w.r.t. <
If < satisfies the condition

g€ g,in(g) € K[x,..

then G N K|x1, ..
INK[X1, ..., Xm]-

. 7Xn]

S Xml = g € K[xq,. ..

., Xm|] is a Grébner basis of

7Xm];

27175



Grébner bases

In order to solve the system of equations

f,
f
fz

XX+y+z-1 = 0,
X+y?+z—-1 = 0,
X+y+z2-1 = 0,

we compute a Grébner basis of the ideal (f;, f,, f3) with
respect to the lexicographic order < (X > y > 2):

g1
92
93
g4

X+y+2z2-1,

yi-y—2+2

2yz2 4 z* — 72,
25— 474 + 473 — 72,

<iex Satisfies the condition in Elimination Theorem.
Since <f1, fg, f3> = <g1 , 92, 03, g4> holds, fi = f, = f3 = 0 and
g1 = @2 = g3 = g+ = 0 have the same solutions.

28/75



Toric ideals

Toric ideals

79" the set of all d x ninteger matrices
A=(ay,...,a,) € 29"

@ Ais called a configuration
fIwecRIYst.w-a;=---=w-a,=1.
@ We usually assume that A is a configuration.

K: field (e.g., K = C)
K[X] = K|[x1, ..., Xn] : poly. ring in n variables over K

@ U= (Uy,...,Up) €2y = X" =x{"--- X"
la = (X"=X"€eK[X]|u,veZl, Au=Av)
— <x"*—x“*eK[X]\ueZ", Au:0>

Toric ideal of A

29/75



Toric ideals

Example

111000
000111
A=]11 00100
010010
00100 1

Ian = (X1Xs — XoX4, X1Xe — X3X4, XoXg — X3X5)

1
0

1
—1
(For example, x; X5 — X2X4 € 14 since A( ° ) =0)

K[A] = K[t1 t3, 4 t4, t t5, tztg, t2t4, tgts] = K[X]/IA

30/75



Toric ideals

Basic properties

Properties of toric ideals:

@ prime ideal

@ The reduced Grdbner basis of /4 consists of
binomials.

@ Ais a configuration
<= [4 is homogeneous w.r.t. a usual grading

@ AcZl,
= I4 is homogeneous w.r.t. some positive grading

@ If each a; is a nonnegative integer vector, then
Iy = <X1 - Ta1,...,Xn - Ta"> N K[X]

So, we can compute a Grébner basis of /4 by
Elimination theorem.
However, this method is not effective in practice.

31/75



Algorithm computing generators of /4

Lemma

J C K[X]: homogeneous ideal

<: reverse lexicographic order

G: the reduced Grébner basis of J w.r.t. <
(J:x°):={fe K[X]|3reNs.t xfed}

Then, a GB of (J : x3°) w.r.t. < is obtained by dividing
each g € G by the highest power of x,, that divides g.

Proposition

A € 7.9%": configuration
B: lattice basis of {u € Z" | Au = 0}

J = <x"*—xlr |ueB>
Thenla=(J: (X1 X)) = ((---(J: X§°) : X3°) - -+ ) = X3°)

32/75



Toric ideals

Three breakthroughs

Toric ideals

0. Commutative algebra

@ Toric ideals have been studied by commutative
algebraists for a long time.

@ For example,

[ J. Herzog
Generators and relations of abelian semigroups

and semigroup rings
Manuscripta Math., 3 (1970), 175 — 193.
is an early reference in commutative algebra.

33/75



Toric ideals

Three breakthroughs

1. Integer programming

@ P. Conti and C. Traverso
Buchberger algorithm and integer programming
in Proceedings of AAECC-9 (New Orleans)
Springer LNCS 539 (1991), 130 — 139.

34/75



Toric ideals

Three breakthroughs

2. Triangulations of convex polytopes.

[ 1. M. Gel'fand, A. V. Zelevinskii and M. M. Kapranov
Hypergeometric functions and toral manifolds
Functional Analysis and Its Applications, 23 (1989),
94 — 106.

1 B. Sturmfels
Grobner bases of toric varieties
Téhoku Math. J. 43 (1991), 249 — 261.

35/75



Toric ideals

Three breakthroughs

3. Conditional test of contingency tables
(Markov chain Monte Carlo method)

[3 P. Diaconis and B. Sturmfels
Algebraic algorithms for sampling from conditional
distributions
Annals of Statistics, 26 (1998), 363 — 397.
(Received June 19983; revised April 1997.)

36/75



Toric ideals

Three breakthroughs

One can study three breakthroughs in

¥ B. Sturmfels
Grdbner bases and convex polytopes
Amer. Math. Soc., Providence, RI, 1995.

See also

*® D. Cox, J. Little and D. O’Shea
Using algebraic geometry
GTM 185, Springer, Berlin, 1998.

® T. Hibi (Ed.)
Grébner bases —Statistics and Software Systems—
Springer, 2013.

37/75



Integer programming

B.1. Integer programming

Example (CLO, “Using algebraic geometry")

Each pallet from a customer A : 400 kg, 2 m®
Each pallet from a customer B : 500 kg, 3 m®

The customer A will pay $ 11 for each pallet, and
the customer B will pay $ 15 for each pallet.

We use trucks that can carry any load

up to 3700 kg, and up to 20 m®.

How to maximize the revenues generated?

4a + 5S5b < 37
Subjectto ¢ 2a + 3b < 20,
ab > 0

find integers a, b which maximize 11a+ 15b.

38/75



Integer programming

4a + 5b < 37
Subjectto ¢ 2a + 3b < 20,
ab > 0

find integers a, b which maximize 11a+ 15b.

8

6

39/75



Integer programming

Standard form

4a + 5b < 37
Subjectto ¢ 2a + 3b < 20,
ab > 0

find integers a, b which maximize 11a+ 15b.

J the standard form

4a + 5b + ¢ 37
Subjectto ¢ 2a + 3b + d = 20,
a,b, c,d > 0

find integers a, b, ¢, and d which minimize —11a — 15b.

40/75



Integer programming

Conti—Traverso algorithm

a
b 37 4 510
Subjectto A c :(Zo)whereA:(2 3 0 1)
d
5

w:=(-11,-150,0)+2-(6,8,1,1) = (1,1,2,2).
G = {x§xf—x1,x2x§x4—x12, X1 XaXa—Xo, X X4—X3X3, Xa X5 —X}

is a GrOébner basis of I, with respect to <y,
(a,b,c,d) =(0,0,37,20) satisfies the constraints.
Therefore, we compute the remainder of x37x2° w.r.t. G.
The remainder is x{ x3 x3.
Hence, (a, b, c,d) = (4,4,1,0) is a solution.

Answer: Four pallets from A and four pallets from B.

41/75



Triangulations

B.2. Triangulations of convex polytopes

In this section, we always assume that
A= (ay,...,a,) € Z%"is a configuration,
and often identify A with the set {ay,...,a,} C Z¢.

Definition

0<r,eQ,Zr,_1}

Conv(A {Z ria; e Qd

i=1

the convex hull of A.

42/75



Triangulations
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Triangulations

Triangulation

Definition

An integral convex polytope P is called simplex if the
number of vertex of Pis 1 4+ dim P.

(ex. line, triangle, tetrahedron.)

Definition
A covering A of Ais a set of simplices whose vertices
belong to A such that Conv(A) = (Jgca F-

Definition

A covering A of Ais called a triangulation if

Q@ Flisafaceof FEA=— F' € A

Q@ F,FFe A— FnF'isafaceof F and a face of F'.

44/75



Triangulations

Initial complex

Definition (
A={a,...,a,} CcZ9

< : monomial order
BCA }

A(in(1)) = { Conv(B) ' [acs i ¢ v/M<(R)

A(in-(1a)) is a triangulation of A.

@ (Gelfand et al.) For w € R”, a triangulation A, is
defined geometricaly. (regular triangulation)

@ (Sturmfels) We have A(inw(la)) = Aw.

45/75



Triangulations

2
Ia = (X1X2 — XaX5, X1Xa — XoX3, X5 — XaXs)

<4: lexicographic order(xx > x; > Xz > X4 > Xs)
Grobner bases of /4 with respect to < is

2 2 2
{X1X2 — XaX5, XoX3 — X1X4, X5 — XaX5, X{ X4 — X3Xs5}

inc,(la) = (X1X2, Xo X3, X5, X¢Xa) . \/iN<,(la) = (X1 Xa, Xo)

46/75



Examples

0101 1
A= 001 1 =1 |, ine (l) = (xixs. %)
11 11 1
ds as
ay C) ao
as




Triangulations

Examples

0101 1
A=100 11 -1
111 1 1

2
In = (X1 X2 — X3X5, X1X4 — X2X3, X5 — XaXs)

<o: lexicographic order(xs > X3 > X4 > X2 > Xq)
Grdbner bases of /4 with respect to <, is

2
{XaXs — X1 X2, XoX3 — X1Xa, XaXs — X }

in<,(la) = \/in<,(la) = (XeXs, Xa X5, XaXs)

48/75



ay

a

a

as

Triangulations
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Triangulations

Unimodular triangulations

Definition
A covering (triangulation) A of A is called unimodular, if
for the vertex set B of any maximal simplex in A, we have

ZA = 7B,
Zi € Z} )
Theorem

(Here, ZA = {Zz,a,
A(in (1)) is unimodular <= +/in.(la) = in-(Ia)

| \

A

50/75



Triangulations

Important properties

(i) Ais unimodular (any triangulation of A is unimodular)
(& Vin<(la) = in.(14) for any <)

(i) Ais compressed
(& in<(la) = in-(la) for any reverse lex. order <)

(iii) A has a regular unimodular triangulation
(& in(la) = in.(ls) for some <)

(iv) A has a unimodular triangulation

(v) A has a unimodular covering

(vi) K[A]is normal (& ZsoA=ZANQxA)

Then, (i) = (ii) = (iii) = (iv) = (v) = (vi) hold.
However, the converse of them are false in general.

51/75



Edge polytopes

G: finite connected graph on the vertex set {1,2,...,d}
E(G) = {ei,...,en} : the edge set of G
(no loop, no multiple edges)

For each edge e = {i,j} € E(G), let p(e) :=e; + ; € Z°.

Ag = (/0(91)7 s 7p(en)) € Z9x"

Conv(Ag) is called an edge polytope of G.

52/75



Triangulations

Edge polytopes

Theorem (O-Hibi (1998), Simis et al. (1998))
For a finite connected graph G, TFAE:

Q@ KIAg] is normal;

@ A has a unimodular covering;

@ For any two odd cycles C and C' of G without
common vertices, there exists an edge of G which
joins a vertex of C with a vertex of C'.
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An interesting edge polytope

Example (O—Hibi (1999))

Let G be the following graph. Then,

@ For any monomial order <, /in-(la;) # in<(lag)

@ Ag has a unimodular triangulation.
(Checked by the software PuNTOS by De Loera.)

54/75



Contingency tables

B.3. Contingency tables

5 x 5 contingency table:

algebra \ statistics | 5 4 3 2 1 | total
5 2 11 0 0] 4
4 8 33 0 0| 14
3 o 21 1 1 5
2 0O 00 1 1 2
1 0O 00 O0 1] 1
total 10 6 5 2 3| 26

Is there a correlation between the two scores?
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Contingency tables

Markov chain Monte Carlo method

Markov chain Monte Carlo method

g 4 \
14
F={T=(t) i g 0<tel
1
\ 10 6 5 2 3[26 )

By a random walk on F, we sample elements of F and
compare certain features (y2-statistics).
(In this example, t|F| = 229,174.)
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Contingency tables

Markov chain Monte Carlo method

For example, fix a;, §; such that >, a; = >~ 3; and let
i b2 b3
by fo b

B B2 B3]

Then by adding or subtracting one of the elements of

{4734}

any of two elements T, T’ of F are connected:

Qi
ap Oﬁt;jEZ .

T=Ty—TeF—TeF—. - —T,=T.
for any alpha i & beta j.
Such an M is called a Markov basis.

57/75


Hidefumi
テキストボックス
for any alpha_i & beta_j.


Contingency tables

Markov bases and toric ideals

Example (continued)

111000 ;” ty + o+ ba
00011 1 t‘z 1 + to + ba
A=|100100],A ;3 = t1 + o
010010 t” tio + bo
001001 tz tis + b

Ia = (XiXs — XoXa,  X1Xe — XaXa,  XoXe — X3Xs)

(X0 (Le ) (03}
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Contingency tables

Diaconis—Sturmfels

Theorem (Diaconis—Sturmfels)

Let M be a finite set of integer matrices.
Then, M is a Markov basis if and only if I, is generated by
the corresponding binomials.

@ 2 way contingency tables:
It is known that /4 has a quadratic Grébner basis .

@ > 3 way contingency tables:
Except for some classes, the set of generators of /4 is
unknown and it is not easy to compute in general.
(You should try to use powerful software 4t1i2.)
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Contingency tables

No n way interaction models

Forry x r, x --- x r, contingency
table(rn >ro>--->r,>2)

I = (tl1l2 ’e) =1,2,..., , 0< fiyip-iy € Z,

we associates a configuration A,,...., consisting of the
following vectors:
o) we? o..cel

/213 +Ip ftip++ip—1

where each i belongs to {1,2, ..., 7} and el i IS
a unit vector in R/ k1717
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Contingency tables

A222

- 000
- X000
O XxO0O
X X O
O O X
X O X
O X X
X X X

0]0)
OX 1 1

XO 1 1

XX 1 1
00 1 1

OX 1 1

XO 1 1

XX 1 1
0]0) 1 1

OX 1 1

XO 1 1

XX 1 1
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Contingency tables

Classification

Classification

r X r unimodular
M Xl X2X:--X2
rnx3x3 compressed,
not unimodular
5x5x3 normal
5x4x3 (Ati2 & Normaliz)
4x4x3 not compressed
otherwise, i.e.,
{>4andrs >3 not normal
({=3andr>4
(=3, n=38,nrn>6andrn >4
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Contingency tables

Decompositions/constructions

@ Algebras of Veronese type

@ Segre—\Veronese configurations
(O—Hibi 2000)

@ Extended Segre—Veronese configurations
(Aoki—Hibi—-O—Takemura 2010)

@ Nested configurations
(Aoki—Hibi—~O-Takemura 2008, O—Hibi 2010)

@ Higher Lawrence configurations (Santos—Sturmfels

2003) — N-fold configurations
@ Toric fiber product (Sullivant 2007)
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Contingency tables

Segre—Veronese configurations

> 2, n: integers

=(by,...,bp),c=(C1,...,Cn), P=(P1,---,Pn),
(g1,...,Qqn) : integer vectors satisfying

@ O0<c<bforalll<i<n

Q@ 1<p<g <dforall1<i<n

Let A be the matrix whose columns are all vectors

(fi,....fq) € Z¢y sit.

d
Q) fi=r
j=1

qi
(2} c,~§Z:j-§b,-foraII1 <i<n
J=pi
Ais called Segre—Veronese configuration.

-
b
q=
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Contingency tables

Segre—Veronese configurations

Example
T=2,n=2,d=5
b=(1.1),¢=(0,0),p=(1.3).9=(25)

Let A be the matrix whose columns are all vectors
(f1, .. .,f5) S Z;O s.t.

Q fi+h+h+hH+h=2

Qo<fi+h<

QO0<fh+h+f<
111000
000111

ThenA=]1 00100
010010
001001

65/75



Contingency tables

Segre—Veronese configurations

Suppose that A is a Segre—Veronese configuration.
Then the toric ideal |4 has a quadratic Grébner basis.

[ S. Aoki, T. Hibi, H. Ohsugi and A. Takemura
Markov basis and Grébner basis of Segre-Veronese
configuration for testing independence in group-wise
selections
Annals of the Institute of Statistical Math. 62 (2010),
299-321.

3 S. Aoki, T. Otsu, A. Takemura and Y. Numata
Statistical Analysis of Subject Selection Data in
NCUEE Examination
Oyo Tokeigaku, 39, (2)—(3), 2010, 71—100. (Japanese)
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Contingency tables

Nested configurations

A= (ay,...,a,) € Z%3": configuration
Foreach /= 1,2,...,d:
B; € 745*: configuration

K [ug’), . uu,} polynomial ring in p; variables
K[B] =K [mﬁ’),.. (’)] CK [u1 . uf],)}
reN
e, +--+e, €A
1 S/k < )‘ik for Vk

The configuration A(B;, ..., By) is called
the nested configuration of A, By, ..., By.

mi) ... min)

KIA(By,...,Bg)l =K | m} (
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Example

~(31)e- |

A(B1, Bz) =

— O

2
2
0
0

O O o &
OO - Ww
OO w—=
o =N O
- Ol O

@ You have 2 coupons.

@ Shop « accepts at most 2 coupons.

@ Shop S accepts at most 1 coupon.

@ Each shop has 2 different items.

@ A coupon allows you to buy 2 items at a discount at a.
@ A coupon allows you to buy 1 item at a discount at 5.
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Contingency tables

Nested configurations

Theorem
Letn > 2.
@ Ia, Ig,, ..., I, have Grébner bases of degree < n
—> lxs,,...8,) has a Grébner basis of degree < n.
@ Ia, Ig,, ..., I, have squarefree initial ideals
—> lxs,,...8y) has a squarefree initial ideal.

KI[A], K[Bi], ..., K[B4] are normal
— KI[A(B;, ..., By)] is normal.
(The converse is not true in general.)

69/75



Contingency tables

References

[ S. Aoki, T. Hibi, H. Ohsugi and A. Takemura
Grobner bases of nested configurations
J. Algebra, 320 (2008) no. 6, 2583 — 2593.

@ H. Ohsugi and T. Hibi
Toric rings and ideals of nested configurations
J. commutative algebra, 2 (2010), 187 — 208.

W T. Shibuta
Grobner bases of contraction ideals
Journal of Algebraic Combinatorics, 36 (2012), 1 — 19.
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Contingency tables

0. Quadratic Grobner bases

The following properties of Grébner bases of toric ideals
are studied by many researchers:

(i) There exists a monomial order such that
a Grdbner basis of /14 consists of quadratic binomials.

(i) K[A] is “Koszul algebra."
(iii) I, is generated by quadratic binomials.

@ (i) = (ii) = (iii) hold.
@ But neither (ii) = (i) nor (iii) = (ii) holds in general.
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Contingency tables

Quadratic Grobner bases

Example (O—Hibi (1999))

Let G be the following graph. Then,
@ /s, is generated by quadratic binomials.
@ KJ[Ag] is not Koszul.

@ Hence, for any monomial order <,
the reduced Grbbner basis of /4, is not quadratic.
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Contingency tables

Infinite family of counterexamples

Hibi—-Nishiyama—Ohsugi—Shikama (2008 2014)

Using software Risa/Asir, Macauley2, CaTs, ...,

we chacked that there are a lot of graphs of < 8 vertices
whose edge polytope is a counterexample.

Moreover, we proved that

Theorem
n>5
C,: cycle of length n
K,.1: the complete graph with n + 1 vertices
G:=K,1— E(Cp)
Then,
@ s Is generated by quadratic binomials

@ /s, has no quadratic Grébner basis .
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Contingency tables

Configurations arising from root systems

Gel'fand—Graev—Postnikov (1997)

A 1=1{ei—e|1<i<j<d} (e eZ%isaunitvector)
0

. E Ad_

A, = d—1

d—1 0
1‘1 1

There exists a monomial order such that
a Grobner basis of /”dj consists of quadratic binomials.

(They constructed a “regular unimodular triangulation.")

O—-Hibi (2002)

Dd:{e,-+ej| 1 §i<j§d}UAd_1
By =1{e1,...,eq} UDy
Cd:{2e1,...,2ed}UDd
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Contingency tables

Toric ideals arising from matroids

Let B={B,..., By} where
@ Each B;is an r-subset of {1,2,...,d};
@ (Basis Exchange Axiom)
Foreach 1 <i j <n,forVx e B;\ B,
dy e B\ Bis.t. (B\{x})u{y}ehB.
Let As = (a1,...,a,) € Z"where a; = > e; € R,
JEB;
Conjecture (White (1980))
la, is generated by quadratic binomials.

la, has a quadratic Grébner basis .
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