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Outline of Today's Tutorial 

Part I. Introduction 

Why max-plus algebra? 

What is max-plus algebra? 

How to use? 

Part II. Relevant Topics 

Where is max-plus algebra? 

Relevance with close fields 

• Control theory, graph theory, discrete mathematics 

Part III. Miscellaneous Topics & Recent Advances 

Extensions to wider classes 

Extension stochastic systems 
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Part I. Introduction 

2 



Why Max-Plus Algebra? 

Simple Scheduling Problem based on PERT 
• PERT: Performance Evaluation and Review Technique 

Project with four activities 
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Earliest Node Times 

Derive an explicit form 
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Eliminate xi on 

the right hand-
side 

Lapse of time: '+' operation 
Synchronization: 'max' operation 

Completion 
(output) time 



Latest Node Times 

Calculate the times from downstream to upstream 

 

 

 
 

 

Slack time (margin) 

 

 

 

 

Critical path  
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Eliminate xi using 
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Features of PERT 

Traditional PERT can describe 

Precedence relationships between activities 

Duration time of each activity 

 

Limitation: cannot describe other practical constraints 
such as 

A single worker (resource) is assigned to multiple activities 

The facilities (resources) process the same job repeatedly 

Resource conflict may occur, etc. 
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Modeling and analysis method using max-plus 
algebra is an useful alternative approach 



What is max-plus algebra? 

Basic operations 
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}{max  RR),max( yxyx 

yxyx 

Addition:  

Multiplication:  max, Ryx

Priorities of operators: '*' > '+' (same as conventional algebra) 
Subtraction ‘-’ and division '/' : not defined directly 

Zero element:  xxx  

xxeex 

)( 

)0( eUnit element:  

0 

1 

•Examples 

5)3,5max(35 
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)0log( 

)1log( e

‘O-plus’ 
 
‘O-times’ 



Behavior of a Production System 

Production system with 3 machines 
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Non-concurrency =  each machine cannot 
process multiple materials at the same time 

ix

iu

: Job number 

: Material feeding time in input i 

y : Finish time 

Earliest processing start times / output time 

)}1(),(max{)( 1111  kxkudkx

)}1(),(max{)( 2222  kxkudkx

)}1(),(),(max{)( 32133  kxkxkxdkx

)()( 3 kxky 

Lapse of time: '+' operation 
Sync., non-concurrency: 'max' 

k M1 
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M3 
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1u
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y
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3d

: Completion time in machine i 



Matrix Operations 

Same rules as conventional algebra 
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Addition:  

Multiplication: 

nm max, RYX

Zero matrix: ε

eUnit matrix: 

pn maxRZ

All elements are  

Diagonal elements: e, off-diagonal elements:  
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Matrix Representation (1) 

Earliest node times of 
the four-activity project 
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Initial state Dummy task (synchronization) 

Linear form in max-plus algebra: 

Precedence relations & elapsed times 

⇒ MPL (Max-Plus Linear) form 
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Matrix Representation (2) 

Earliest schedule of the three-
machine production system 
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External inputs 

)()1()()( kkkk uBxPxFx MPL form:  

Non-concurrency Predecessors 
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How to Solve the Equation? 

Substitute iteratively 
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bxAx 
bxAx 

bAx
1)(  I

bbxAA  )(

bAAexA   )( 23

bAexA   )(2

bAAAexA   )( 12 ss 


bAbAAAe   *12 )( s

If the precedence relationships are represented by a DAG 
(Directed Acyclic Graph), 

Cf. In conventional algebra, 

)1(, 1 nsss  
εAεA (nilpotent) 

Kleene Star (Closure) 



Interpretation of the Representation Matrix 

Solution of the recursive linear equation 
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A: precedence relations 
b: start time 

j: source node 

: earliest arrival times between two nodes 
= longest paths 
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Earliest Times of the Production System 

Earliest times of the system with 3 machines 
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: earliest processing times between 
two nodes 

: earliest processing times from 
the external inputs 



Focusing on the Latest Time 

Latest node times of the four-activity project 
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Solution of the Recursive Equation 

Solve (a kind of) recursive linear equation 

Latest times 
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Part II. Relevant Topics 
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Relevant Fields 

Modern control theory 

State monitoring and control of systems 

• Control input: start time of a job  

• Control output: end time of a job 

• State variable: event occurrence time 

• System parameter: duration time 

Petri net 

Representation of the behavior of event-driven systems 

• Structure: synchronization, parallel processing, etc. 

• Place: conditions for event occurrence (non-concurrency, capacity) 

• Transition: event occurrence, start/completion of an event  

• Arc: precedence constraint, sequence of events 

• Marking: system’s state 
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Relevance with Modern Control Theory 

Earliest schedule for the 3-machine production system 
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)()()( ttt BuAxx 

)()( tt Cxy )()( kk xCy 
Cf. 

)()1()( kkk uBxAx 

Generalized representation 

Same form as the state-space representation 

Some methods in modern control theory can be applied 

• Internal model control, model predictive control, adaptive control, etc. 

)]()1([)( * kkk uBxPFx 

)()( kk xCy 



Relevance with Petri net 

Behavior of TEGs: expressed by an MPL form 

TEG: Timed Event Graph 

All places have one input and one output transitions 
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Ultra-discretization (1) 

Ramp function 
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Ultra-discretization (2) 

Variable transformation 

 

 

Addition 

 

 

Multiplication 

 

 

Zero & unit elements 
• Zero element: 

• Unit element: 
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Semiring & Dioid 

Semiring 

Commutative law: 

Associative laws: 

Distributive laws: 

 

Three axioms for e and : 

 

 

Dioid (idempotent semiring) 

+Idempotency 
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Dzyx ,,

xxx  (does not hold in usual algebras) 

),,( D is a semiring 

is a Dioid 



Some Classes of Dioid 

 

Max-plus algebra: 

Max-times algebra: 

Min-max algebra: 

Min-plus algebra: 

Boolean algebra: 
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xxx 

Note: 
These are widely referred to as *** algebra, 
but are not an algebra in a strict sense  
because of 



Communication Graph 

State transition graph of a representation matrix 

Node: state (of jobs, facilities) 

Weight of an edge: transition time 

Example 
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Eigenvalue problem 

Num. eigenvalues of square matrices: n or smaller 
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These are all eigenvectors 
-> indeterminacy for constant offsets 
(Set e for the minimum non- element)  



Eigenvalue of a reduced matrix 

Only one eigenvalue 

Maximum average cumulative weight among all cycles 

All elements of eigenvectors are non- 
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Kleene Star In Max-Plus Algebra 

Also referred to as the Kleene Closure 

Collection of symbols of generated by arbitrary repetitions of 
an operation 

In Max-plus algebra 

 

 

 

longest paths for all node pairs 
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Kleene Star In Some Classes 

Directed Acyclic Graph (DAG) 

Today's main target  

• There is no path with s steps or greater 

 

Connected graph with non-positive maximum circuit 
weight 
• Any non-positive circuit cannot be the longest path 
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Part III. Miscellaneous 
Topics & Recent Advances 
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Tetris-Like Schedule 

Earliest schedule of 3 blocks  
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: Block (job) number k 

ix : Upper-end position of resource i 

}2)1(,1)1(max{)( 322  kxkxkx

}3)1(,2)1(max{)( 323  kxkxkx

)1()(),1()(),1()( 554411  kxkxkxkxkxkx

}),()1({max)( jij
j

i lukxkx 

ii lu , : relative upper-/lower- end  
positions of resource i 

)1()(  kxkx ii
: Resource i is not used 

Lapse of time: '+' 
Non-concurrency: 'max' 

k-1 

Resource  1    2    3    4    5 

k 

Block = relative times are fixed 
Pre- and post- processing tasks 
Facility interference 



Matrix Representation 

Earliest times of the Tetris 
type schedule 

32 

)1(32

21

)( 

































 k

e

e

e

k xx

)1()(  kk xMxMPL form: 

}2)1(,1)1(max{)( 322  kxkxkx

}3)1(,2)1(max{)( 323  kxkxkx

)1()( 11  kxkx

)1()( 44  kxkx

1   2   3   4   5 

)1()( 55  kxkx

Non-diagonal:  
  completion time in i – start time in j 

Diagonal: block depth 
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Duality & Dual System 

Earliest times 

State equation 

 
• gives the earliest completion times 

Output equation 

 
• gives the earliest output times 

Latest times 

 
• Latest start times 

 
• Latest input times 
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)]()1([)( 0 kkk TT
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)()( 0 kk T
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PFPA  *

0 )(

0B

0C

0F

: Input matrix  e/ 

: Output matrix e/ 

: Adjacency matrix e/ 

Pls. refer to Ref. [1] for details 

)](diag[ kdP 

Connected = e 

Not connected =  

Transition matrix 



Consideration of Capacity Constraints 

Assumptions so far 
• Number of jobs that can be processed simultaneously in a facility = 1 

• Number of maximum jobs that can exist between two facilities = +Inf 

 

 

Consideration of maximum capacity 
• Specify maximum capacity between two arbitrary nodes 

Representation of lag times 
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Ref. [2] 



Application to Model Predictive Control 

Substitute iteratively to the state equation 

 

 

 

 

Output prediction equation 
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Case of production systems: 

Problems to determine 

proper material feeding 

times by giving due dates 

Ref. [3] 

)()( kk xCy 



Efficient Calculation of the Kleene Star 

Time complexity with a naïve method:  

Efficient Algorithms: 

1. Topological sort 

• Based on Depth First Search (DFS)  

• If the precedence relations are given by an adjacency matrix: 

• If given by a  list: 

 

 

 

 

2. Iterative update of the longest paths 
• Starting from a unit matrix e , procedures similar to the elementary 

transformation are performed 
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)( 4nO Refs. [4], [5] 

))(( mnnO  n: Num. nodes 

m: Num. edges 

)( 2nO

)( mnO 

)( mnO 



Extension to Stochastic Systems 

Tandem structure 

Distribution function of summation 

 

 

• Asymptotically -> central limit theorem 

Fork structure (synchronization) 

Distribution of max. 

 

 

• Only Weibull distr. (incl. exponential distr.) and Gumbell distr. (incl. 
double-exponential) are simple, while others are complex 

Hard to handle analytically for general cases! 
• Numerical computations for only small-sized systems are achieved 
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Another Approach to Stochastic Systems 

Utilize the framework of the Critical Chain Project 
Management (CCPM) Method 
• High uncertainty in the execution time of tasks  

• Detailed probability distribution is not considered 

Affinity with max-plus algebra because of the same formulation 
framework as project scheduling problem 
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Outline of CCPM 

Curtail (cut) the margin 
time of each task 

Redistribute (paste) the 
curtailed times to critical 
points 

• Insert time buffers 

t 

)(tf

HP 

(Highly Possible) 

90% 

ABP 

(Aggressive But Possible) 

50% 

Ref. [6] 



Insertion of Time Buffers 

Pre-processing 

Curtail the margin times 

Identify critical or non-critical 

Feeding buffer 

Insert just on the eve of 
critical -> non-critical points  

• 1/2 of the cumulative weights of 
the non-critical chain 

39 

Project buffer 

Insert just before the output 

• 1/2 of the cumulative weights of the critical chain 

Effective for both reducing the lead time and avoid 
delay for the due date 

1 2 3 

4 

1 2 3 

4 

P 

F 



Thank you for listening! 
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Reference Books 

Max-plus algebra 

F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, 
Synchronization and Linearity, John Wiley & Sons, New York, 
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• Now out of print: can be downloaded via: http://maxplus.org 

B. Heidergott, G.J. Olsder, and L. Woude, Max Plus at Work: 
Modeling and Analysis of Synchronized Systems, Princeton 
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Critical Chain Project Management 

P.L. Leach, Critical Chain Project Management, Second Edition, 
Artech House, London, 2005. 
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