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

 Abstract
 In this tutorial, we will give an overview of typical algorithms of quantifier 

elimination over the reals and illustrate their actual applications in 
industry. Some recent research results on computational efficiency 
improvement of quantifier elimination algorithms, in particular for solving 
practical industrial problems, will be also mentioned. Moreover, we will 
briefly explain valuable techniques and tips to effectively utilize quantifier 
elimination in practice.
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Quantifier Elimination (QE)



Real Quantifier Elimination

Quantifier elimination 
 algorithm to compute an equivalent quantifier-free formula for a given 

first-order formula over the reals

 Input : first-order formula in the elementary theory of real closed fields

 formula     : polynomial equations, inequalities, inequations over  R,
Boolean operations[∧,∨,¬,⇒, etc]

Output: an equivalent quantifier-free formula in free variables

 Feasible regions of free variables as semi-algebraic sets
 True or  False if all variables are quantified (Decision problem)
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Examples: Quantifier Elimination

Input
First-order formula

Output
An equivalent quantifier-free 

formula
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QE algorithms

6



Typical QE algorithms

General QE algorithm
For arbitrary formulas 
 QE by  Cylindrical Algebraic Decomposition (CAD)

Special QE algorithm
For restricted classes of formulas
 QE by Virtual Substitution

• for linear/quadratic formulas (w.r.t. quantified variables)

 QE by the Sturm-Habicht sequence 
• for sign definite condition (SDC) :  
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QE algorithms - some more
 Cylindrical Algebraic Decomposition       Collins 1975
 Hong 1993
 Gonzalez-Vega 1989,

Yang et.al, 1996   
 Anai et.al, 1999
 Sign Definite Condition

 Low degree formula w.r.t quantified variables (degree limit : n=1,2,3)

 Virtual Substitution
 n = 1 :   Weispfenning et.al, 1988
 n = 2:    Loos et.al, 1993
 n = 3:    Weispfenning 1993

One block QE Hong et.al., 2012
 Allows measure-zero error
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Brief History of QE algorithms

1930  Tarski proved QE is possible over R
1951  Tarski proposed a QE algorithm over R

Computational complexity cannot be bound by any tower of 
exponentials

1975 Collins made a breakthrough
QE by Cylindrical Algebraic Decomposition (CAD)
Computational complexity down to doubly exponential w.r.t. the 

number of variables
1988 QE computation is proved to be heavy

Doubly exponential in worst case (Davenport and Heinz, 1988)
1990 QEPCAD: First CAD-based QE implementation (Hong)

 1980’s Different approaches
 QE algorithms for a restricted class of input

• QE for up to linear/quartic formulas, Positive polynomial condition
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Typical QE tools
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CAD
RISC-Linz + etc.  

(G.Collins, H.Hong, C.Brown)

VS, CAD, 
Univ. Passau 

(T.Sturm, A.Dolzmann,V.Weispfenning)

CAD, VS, SDC
Fujitsu Laboratories Ltd. 

(H.Yanami, H.Iwane, H.Anai)

CAD, VS
Wolfram Research, Inc. 

(A.Strzebonski)

REDLOG



QE algorithm:
Cylindrical Algebraic Decomposition
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Cylindrical Algebraic Decomposition (CAD)
QE by CAD 
 First proposed by G.E.Collins 1975
QE by partial CAD (Collins & Hong 1991)

CAD
 Input :
Output :  

• partition of the r-dimensional real space, where all the input polynomials are sign-
invariant within each cell

 Implementation
QEPCAD,  Mathematica, SyNRAC

 Properties
Complexity: 
Output  formula  is in general simple 
No restriction on input formula  
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Cylindrical Algebraic Decomposition (CAD)
CAD
 Input :
Output :  

• partition of the r-dimensional real space, 
where all the input polynomials are sign-
invariant within each cell

CAD algorithm
 consists of 3 phases 

• projection phase
• base phase
• lifting phase
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Cylindrical Algebraic Decomposition (CAD)
 3 phases of CAD algorithm
 projection phase

• Many “projection operators” have been proposed
• Projection operators that produce small sets are good
 Example:

• Input 

• Output 

 base phase
• Real root isolation

• Often univariate poly over algebraic ext.

 Lifting phase 
• Algebraic extension
• validated numerics (SNCAD)
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Cylindrical Algebraic Decomposition
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2
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Cylindrical Algebraic Decomposition
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2
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Cylindrical Algebraic Decomposition
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2
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CAD: Projection, Base phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Projection
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CAD: Base phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

Base
• Select a point between each set of neighboring real roots => sample points 
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CAD: Projection, Base phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

Base
• Select a point between each set of neighboring real roots => sample points 
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CAD: Lifting phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Lift the sample point (in R) to higher dimensions

• Substitute                         for                                                                      
• and we get  a set of polynomials in y :
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CAD: Lifting phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Fin real roots : of polynomials in            
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CAD: Lifting phase
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 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Fin real roots : of polynomials in            
• Choose a point between each set of neighboring real roots



CAD: Lifting phase
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 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Do  the same lifting process over all sample points 

• Fin real roots : of polynomials in            
• Choose a point between each set of neighboring real roots

Sample 
points



QE by CAD
 Procedure of QE by CAD
 Input: First-order formula : 

• CAD construction for 
• Collecting true cells in CAD in terms of the given first-order formula
• Solution formula construction : Disjunction of the formulas defining the true 

cells 

 Formula construction of a cell 
• Such formula is constructed from projection factors (CAD contains complete 

information about  their signs)

Note
• “Simple” formulas are desirable!

• Hong showed how to reduce simple formula construction to a combinatorial 
optimization problem

• CAD’s ability to provide simple solution formulas is unique compared with 
special QE algorithms.
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QE by CAD: formula construction 
 Formula construction of a cell
 First-order formula : 
CAD construction:

 Solution formula: 
26
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QE algorithm:
Virtual Substitution method
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Virtual substitution (VS) 
QE by VS for low degree formulas (w.r.t quantified variables)
 Linear :  Weispfenning et al, 1988
Quadratic :    Loos et al, 1993
Cubic :    Weispfenning 1993

 Implementation
REDLOG
 SyNRAC

 Properties
Complexity: 
Output  formula  is in general large and redundant .
Degree violation (except linear case)
 Formula simplification is important. 
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Virtual substitution (VS) 
 Linear case
 Linear first-order formula

where every atomic formula in       is of the form 

 Problem 

1. Change the innermost quantifier into        :  

2. Remove the innermost quantifier 

3. Iterate until the quantifiers run out.
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Virtual substitution (VS) 
QE problem: 
 VS algorithm for a linear formula
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Virtual substitution (VS) 
QE problem: 
 VS algorithm for a linear formula

 Elimination set  S
 Set of atomic formulas in      :

 An elimination set for 

• Other elimination sets are known. 
• Using smaller elimination sets helps increase algorithm’s efficiency.

31

 )(xx linear  :
  )//()( txxx

St





































 jiIji
a
b

a
bIi

a
b

a
bS

j

j

i

i

i

i

i

i ,,|
2
1|1,



}},,,{ ,  | 0    {  iiii Iibxa 

 )(xx



QE algorithm:
Sturm-Habicht sequence method
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Sturm-Habicht sequence (SH) 
QE by Sturm-Habicht sequence for sign conditions of  an 

univariate polynomial  f (x) (with parametric coefficients)


• Gonzalez-Vega 1989, Yang et al. 1996 

 : sign definite condition (SDC)
• Anai & Hara 1999,  Iwane et al. 2013

 Implementation (SDC)
 SyNRAC

 Properties
Complexity: 
Output  formula  is in general large and redundant.
 Formula simplification is important. 
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Sturm-Habicht sequence (SH) 
QE problem
 Sign definite condition:

• SDC is equivalent to a condition that                                                                       
when the leading coefficient  of  f (x) is positive:

 A special QE algorithm using SH sequence for SDC
 Sturm-Habicht sequence of  f (x) :  SH( f )

• Counts the number of real roots of  f (x) in an interval (like the Sturm 
sequence) through  counting the number of sign changes of the sequence 
SH( f )  at the endpoints of the interval

 SDC

Combinatorial QE method
• Enumeration of sign changes of the sequence SH( f ) having the above 

property

34 Copyright 2010 FUJITSU LIMITED



Sturm-Habicht sequence



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Sturm-Habicht Sequence


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Note This is different from that of Sturm sequence.



Real Root Counting by Sturm-Habicht Sequence


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Sturm-Habicht sequence (SH) 
 Sign definite condition:

when the leading coefficient  of  f (x) is positive:

Notations



38



Algorithm & Implementation (Anai & Hara 1999)

Combinatorial QE algorithm for SDC

 Implementation
 Since steps 1 and 2 are independent of an input polynomial, we can 

execute these steps beforehand and store the results in a database. 
This greatly improves the total efficiency of the algorithm.
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Algorithm & Implementation (Anai & Hara 1999)

 Example
 SDC:

• for 

 Sturm-Habicht sequence of  f (x)

Remark: 

 Formula construction

40

s2 s1 s0 c2 c1 c0 # TF

+ + + + + + 0 T
+ + + + 0 + 2 F
+ + + + - + 2 F
+ + 0 + + 0 0 T
+ + 0 + 0 0 0 T
+ + 0 + - 0 1 F
+ + - + + - 0 T
+ + - + 0 - 0 T
+ + - + - - 0 T

Number of real roots 
in              



 Finds redundant sign conditions


 Simplifies by the rules

Combinatorial optimization.


s2 s1 s0 c2 c1 c0 # TF

+ + + + + + 0 T
+ + + + 0 + 2 F
+ + + + - + 2 F
+ + 0 + + 0 0 T
+ + 0 + 0 0 0 T
+ + 0 + - 0 1 F
+ + - + + - 0 T
+ + - + 0 - 0 T
+ + - + - - 0 T

For speeding up 

Necessary conditions for SDC

Simplification by using 
Boolean function manipulation

F
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Necessary Conditions for SDC (Iwane et al. 2013)


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s2 s1 s0 c2 c1 c0 #

+ + + + 0 + 2

+ + 0 + 0 0 0



Necessary Conditions for SDC (Iwane et al. 2013)


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









•

Boolean Algebra / Boolean Function
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Boolean Function Manipulation
 There are a number of Boolean expressions to represent a 

Boolean function
 e.g., 
 Simplification of Boolean expressions.

• Finding a Boolean expression which has relatively a small number of product 
terms

 Boolean expressions have wide range of application
 Simplification of Boolean expressions directly corresponds to 

minimization of area of the designed circuit.

 ESPRESSO (Brayton et al., 1984)
 A heuristic method to simplify Boolean expressions.
 http://diamond.gem.valpo.edu/~dhart/ece110/espresso/tutorial.html
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Simplification based on Boolean Function Manipulation

 The sign of real number is three-valued, we need two Boolean 
variables to represent them.

 Introduction of don’t cares to simplify Boolean expression 
further.


 Sign conditions which do not satisfy the necessary conditions.
 Sign conditions which satisfy 

• The number of real roots is non-negative 
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0100   1

ESPRESSO for quadratic poly. problem

INPUT FILE OUTPUT FILE

00 = 0
01 = -1
10 = +1

s0 c2 c1 T/F

+ + + T
+ + 0 DC
+ + - F
0 + + T
0 + 0 DC
0 + - F
- + + T
- + 0 T
- + - T

s0 c2 c1

< > *
* > ≧

1 = true
2 = don’t care
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Symbolic optimization by QE
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Symbolic optimization accomplished by QE

Advantages

 Exact (global) optimal  value even for nonconvex case 

 Parametric solving  e.g.,  parametric optimum,  feasible regions

Enabler for variants of parametric optimization 

 Parametric constraint solving:   feasible region

 (Multi-) parametric optimization:   optimal value function

Multi-objective optimization:      Pareto optimal front (trade-off line)

49



Constraint solving by QE
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Constraint solving by QE




 sixxfxx inin ,,1,0),,(,, 11    s.t.   Find   ,,i

 sixxfxx ini ,,1,0),,(, 121    s.t.   of regions feasible the Find

 0),,(0),,( 11111 snsnn xxfxxfxx   

true (+ sample solution) / false 

 0),,(0),,( 11113 snsnn xxfxxfxx   
:  quantifier-free formula in x1, x2),( 21 xx

w

z

]   06)242)(2(  
     02     06     

    0    101  [ 





xyxyxxy
xyxy

yxyx  
True
Sample point:  (x,y)=(5,1)QE

∃x ∃y (4 x - w2 =0 ∧ x - x y -z+ 5 = 0
∧1 ≦ x ≦ 4 ∧ 1 ≦ y  ≦ 2)

[ w - 2 ≧ 0 ∨ w + 2 ≦ 0 ]
∧ w + 4 ≧ 0 ∧ w - 4 ≦ 0 ∧
z - 5 ≦ 0 ∧ 4 z + w^2 - 20 ≧ 0

QE
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P(s,p)C(s,x)
+

-

parametersplant   : ],,[p lpp 1

parameterscontroller : ],,[x txx 1

p),(
p),(

p,

x),(
x),(x,

sd
sn

s

sd
sns

p

p

c

c

  )P(

)C(





Stable?  or 
Unstable?

Stability of a Control system

cpcp ddnnsf 
polynomialsticcharacteriloop-closed

p)x,,(
■
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Hurwitz stability

nn
nn bsbsbssf  


1
1

1 )( 

is stable 

Routh-Hurwitz criterion

bi : parametric

QE

P.Dorato et.al (1995)
M.Jirstrand     (1996)

Im

Re0

left half plane

nn
nn bsbsbssf  


1
1

1)(  

is stable 

Stability of a Control system
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Stability Analysis of Linear Systems

}1{
22

4)( 2 ipoles
ss

sG 


           

s]limitation  [phisical            101,0)( 
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Nbs
bsNsF

NbsNbNsNbs
bsN
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06)242)(2(   ,02  ,06  NbNbNNbNbNb

GF+
-

Resulting closed-loop system :

Stability condition (Hurwitz criterion) :

Unstable linear system :
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Q1 .   For  which  values  of  b > 0,  exists a value of  N ∈ ( 1,10 )
s.t. the closed-loop system is stable ?

]06)242)(2(0206
0101[




NbNbNNbNbNb
bN

     
  N

]002110050[ 2  bbb     

]0101[  bN  b

]010124[ 2  NNNN         

b∈(0.24,1.76)

N∈(4.45,10.0)

QE

QE

]0101[  bN  N b

QE true

b

N
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]]06)242)(2(02
060[]105[[




NbNbNNbNb
NbbN

                
 N

]0225025[ 2   bb

Q2 .   For  which  values  of  b > 0,  hold that for all  N ∈ ( 5,10 )
the closed-loop system is stable ?

QE

b∈ ( 0.66, 1.34 )

,1
3

5
1

3

5

56

Stability Analysis of Linear Systems



Solving optimization problems by QE
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Optimization by using QE

Problem QE

QEExample

QE

QE
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Parametric optimization
Given:
 an objective function to optimize
 a vector of constraints
 a vector of parameters

Obtain:
 the performance criterion (and the 

optimization variables) as a function 
of the parameters
 the regions in the space of parameters 

where these functions remain valid

)(z



Obtain optimal solution as a function of parameters

s

n

θg

θfz













           
           

)(   s.t.    

)(

x
x

x
x

0,

,min)(
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Problem QE

Example

QE

QE

Parametric optimization by using QE
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Optimization by QE 
 Parametric optimization
 Example

QE problem
∃x ∃y 
(x1 - x1 x2 + 5 = z ∧ 4 x1 - θ2 =0
∧1 ≦ x1 ≦ 4 ∧ 1 ≦ x2 ≦ 2)

[θ - 2 ≧ 0 ∨ θ + 2 ≦ 0 ]
∧ θ + 4 ≧ 0 ∧ θ - 4 ≦ 0 ∧
z - 5 ≦ 0 ∧ 4 z + θ 2 - 20 ≧ 0

QE

21
41

04

5,

,min)(

2

1

2
1

211

min









x
x
θx

xxxθf

θfz

           
           
           

)(   s.t.    

)(

x

x
x



Feasible region of z- θ

θ

f

5)( 2
4
1

min  z

optimal solution as a function 
of parameter
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Multi-parametric optimization in control
 Applications
 Bi-level / Hierarchical programming
Optimization under uncertainty
Model predictive control
On-line control and optimization of 

• chemical, biomedical,  automotive systems

Parametric profile (opt)

Plant

Plant
state

Control
actions

MPO

Plant
state

Control
actions

off-line

Optimizer

Control unit

on-line
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Multi-objective optimization by QE
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Multi-objective optimization (MOO)
 Problem

 Solution

x1

x2

f1

f2

Parameter space Objective space

f1

Pareto optimal front

x1
Pareto solution

f2x2

absolutely optimal 
solution
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Multi-objective optimization by QE
 Problem

QE problem

Copyright 2010 FUJITSU LIMITED65

f1

Pareto optimal front

x1
Pareto solution

f2x2



Problem QE

Example

QE

QE

Multi-objective optimization by QE
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Problem

minimize  y1 = f1(x)
y2 = f2(x)

…
subject to  C(x)

Solution

“Pareto set”

P = { all “minimal” y w.r.t ≤ }
y ≤ y’ iff ∀i yi ≤ yi’

Solution

y1

y2

Toy Example

minimize   y1 = 2 √x1

y2 = x1 – x1x2 + 5

subject to   1 ≦ x1 ≦ 4,
1 ≦ x2 ≦ 2

Example: Multi-objective optimization
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Existing numerical methods for MOO 
 Using single-objective optimization

 Weighted sum strategy
 Norm minimization
 E-constraint method

 Pareto analysis
 Normal boundary intersection

 Using metaheuristic algorithms
 Evolutionary algorithms
 Particle swarm optimization
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Solution

y1

y2

Solution

y1

y2

Optimization Problem

minimize   y1 = 2 √x1

y2 = x1 – x1x2 + 5

subject to   1 ≦ x1 ≦ 4,
1 ≦ x2 ≦ 2

QE Problem

∃x1∃x2 (y1 = 2 √x1 ∧
y2 = x1 – x1x2 + 5 ∧

1 ≦ x1 ≦ 4 ∧
1 ≦ x2 ≦ 2)

Comparison: Symbolic vs. Numeric
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 SRAM shape optimization
Objective functions:

• min ( - Yield rate(Y), Voltage(V), Size(S) )

HDD (head) shape design
Objective functions:

• Stability of Flight-height, attitude(Roll, Pitch, Yaw)

Applications : MOO by QE

Y

S V

S

V 99.999839
99.999997

99.993559

Y
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Multi-objective optimization by QE

Optimal shape design of Air Bearing 
Surface of HDD

71



Shape design of Air Bearing Surface of HDD

72

 ABS (Air Bearing Surface)

 The disc is rapidly spinning and the ABS surfacing over the disc due to 
air current.

 Problem:  Find the optimal shape of ABS s.t.
 flight height of the ABS from the rapidly spinning disc is close to a target 

value
 attitude (Roll, Pitch, Yaw) of the ABS is stable
…



Design problem:  Find the optimal shape of ABS s.t.
 1) flight height of the ABS from the rapidly spinning disc  is close to a target value
 2) attitude (Roll, Pitch, Yaw) of the ABS is stable
…

 Simulation

Optimization problem                 (Yanami et al., 2009)

Response surface methodology 
• Modeling of  the objective functions                         from a certain number of 

simulation results.
Multi-objective optimization

Shape design of Air Bearing Surface of HDD
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),...,,( 11 nxxxx 

1x Surfacing 
simulation

(fluid dynamics)

h :  flight height,
A:  (roll, pitch, yaw,)
…

Input Output Objective functions

…

2x

3x



Our real problem
 Shape parameters :
Objective functions:

Response surface construction
 Data set of                                       for  553 different shapes 
 Polynomial  model of                    :

• Linear regression  (R2 > 0.95)
Multi-objective optimization 

MOO by QE
 Feasible region of

• Pareto front
• Solution by a numerical  method

Shape design of Air Bearing Surface of HDD
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f1= x1*1.56834776 +x2*0.804244896 +x3*21.32342295 +x4*(-7.71943013) 
+x5*(-4.262328228) +x6*12.95499327 +x7*0.29533099 +x8*(-1.142721635) 
+(-7.809437853);

f2:= x1*0.37323681 + x2*1.313718858 + x3*7.296804764 + x4*(-
3.214736241) + x5*10.32056396 + x6*6.068769576 + x7*(-2.987556175) + 
x8*6.86732377 + (-4.344757609)

f1
××

×
×

×

f2

f1

f2×



Parametric optimization by QE

Optimal shape design of SRAM
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shape design of an SRAM cell

76

 Static random-access memory (SRAM) cell

 Problem: Find the optimal shape of an SRAM cell with 
 Smaller cell size (area)

 Lower fail rate   



Multi-optimization problems 

MOO by QE
QE problem                                               an equivalent quantifier-free formula

shape design of an SRAM cell
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s.t.

 VS algorithm: REDUCE 07-oct-10 / REDLOG 1.60 GHz CPU / 8.0 GB memory

more than
1 hour….



QE problem

 Symbolic-Numeric optimization   (Iwane et al., 2011)
• We utilize                       as a search area in a numerical optimization approach

• better approximation of an optimal values than ordinal numeric approaches
• more effective than symbolic approach

shape design of an SRAM cell
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QE

more than
1 hour….

QE

VS
(linear, quadratic)

VS
(linear)

1 sec



MOO results comparison

modeFrontier 4.2.1  / Particle Swarm Optimization (PSO) / 2000 samples
1.60 GHz CPU / 8.0 GB memory

Symbolic-Numeric Numeric
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QE problem

 Symbolic-Numeric optimization   (Iwane et al., 2011)
• We utilize                       as a search area in a numerical optimization approach

• better approximation of an optimal values than ordinal numeric approaches
• more effective than symbolic approach

shape design of an SRAM cell
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QE

more than
1 hour….

QE
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(linear)
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INTERPLAY:
Quantifier elimination algorithms and 
applications in Control
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Brief History of QE algorithms

1930  Tarski proved QE is possible over R
1951  Tarski proposed a QE algorithm over R

Computational complexity cannot be bound by any tower of 
exponentials

1975 Collins made a breakthrough
QE by Cylindrical Algebraic Decomposition (CAD)
Computational complexity down to doubly exponential w.r.t. the 

number of variables
1988 QE computation is proved to be heavy

Doubly exponential in worst case (Davenport and Heinz, 1988)
1990 QEPCAD: First CAD-based QE implementation (Hong)

82

 1980’s Different approaches
 QE algorithms for a restricted class of input

• QE for up to linear/quartic formulas, Positive polynomial condition

Note !
Such special classes 

have close relations with
Industrial applications !



QE and control applications
 Purely symbolic and algebraic approaches have several 

“practical size” applications in control. 

 Special algorithms by exploiting the structure of the problems
have been successfully applied.

 Still we need to solve larger size problems in a reasonable 
amount of time.

We employ validated numerical methods  (interval arithmetic)
 Symbolic-Numeric CAD computation (still exact)

• Speeding up QE algorithm based on CAD
 Approximated quantified constraint solving

• Obtaining approximated feasible regions (with guarantee) 
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General QE: QE by CAD
 For speeding-up QE by CAD 
QE by a partial CAD (Hong, Collins)
 “Projection Operator” 

• Collins’ projection operator (the original)
• Hong’s projection operator (improved Collins’)
• McCallum’s projection operator
• Brown-McCallum projection operator (improved McCallum’s)
• “special purpose” projection operators: 

• Collins-McCallum:  equational constraints, Seidl-Sturm:  generic CAD, 
• Strzebo´nski : solving strict systems, Anai, Parrilo: solving SDP 

 Lifting 
• Full-dimensional cell
• Lifting with symbolic-numeric computations  (SN-CAD)
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General QE: QE by CAD
QE by CAD 
 Early period on QE applications (stability analysis in control)  …

 Still many QE problems requires general QE algorithms by CAD.
• Use CAD properties for a given problems

• Optimization problems:
 Semi-definite programming (Anai & Parrilo 2003)
 Polynomial optimization problems (Iwane et.al. 2013)
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P.Dorato & I.Sakamaki IFAC Rocon’03, 2003
While commercial software is now available for the application of symbolic

QE for the design of robust feedback systems, only problems of limited complexity 
can be solved. Of course, super-computer systems can extend the level of complexity,
But the level is likely to saturate on problems where the order of combined plant 
and compensator is greater than 5 or 6.

P.Dorato et.al. UNM Technical Report : EECE95-007, 1995
Our Experience indicates that QEPCAD can always solve, in a few

seconds on a large workstation, most textbook examples. It can also 
solve some significantly harder problems and  a few nontrivial problems.

Particular subclasses  : Special QE  algorithms !



Special QE algorithms
 Specialized QE  (for restricted inputs) 
Reducing the industrial problems into “nice / simple” formulas by 

exploring their structures.
 Solving the formulas by specialized QE algorithms 

 Examples
 Sturm-Habicht sequence

• Sign behavior of univariate polynomial
• Sign definite condition (SDC):

 Virtual substitution
• for Low-degree inputs (linear, quadratic)
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Control system design problem



Relevance of Special QE algorithm
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Robust control 
Design problems SDC

Control problems First-order formulas

General QE 

Special QE 



Parametric robust control design
 Problem
Multi-objective low-order fixed-structure controller synthesis

• Frequently required problems in industry 
• Specifications in frequency domain properties

 Our approach
 A parameter space approach by symbolic computation (QE)

+ - )C( x,s )P( ps,
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optimization

Superpose
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Feasible regions
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Robust control design by a general QE
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Robust control design by a special QE
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H∞-norm constraint

Frequency restricted H∞-norm constraint

⇔

⇔

⇔

⇔ 0)(     0  xfx

0)(     0  zhz⇔

bilinear transformation

SDC reduction
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Example： mixed sensitivity problem
Mixed sensitivity problem
 Specifications:  Frequency restricted H∞ norm constraints

(b)
(c)

response Robust stability
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 Stability with Mixed sensitivity

(a) Hurwitz Stability

(b) Sensitivity

(c) Complementary sensitivity

(b) ⇒

(c) ⇒
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Parametric robust control design
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(b) ⇒

(c) ⇒

 Stability with Mixed sensitivity

(a) Hurwitz Stability

(b) Sensitivity

(c) Complementary sensitivity
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Parametric robust control design

94



 Stability with Mixed sensitivity

(a) Hurwitz Stability

(b) Sensitivity

(c) Complementary sensitivity
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Parametric robust control design
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Robust control design
Our approach

 Tractability
 PI/PID for a plant with order 10 : < 1h 

Multivariate
Polynomial
Inequalities
(parametric)

Symbolic 
optimization

(QE)

Feasible regions

specification

P(s)C(s)r e u y
- +

Anai & Hara (ACC2000,IFAC02)

reduction

(a) Hurwitz Stability
(b) H∞-norm constraint 
(c) Gain/Phase margin
(d) Pole assignment
(e) Stability radius

Sign Definite ConditionFrequency domain properties Specialized  QE for SDC
(Sturm-Habicht sequence)
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Parametric robust control design
 Parametric robust control design by QE has been successfully 

applied to nontrivial industrial problems.
 Electric generating facility

• generator excitation control design (Yoshimura et al. 2008)

 Power supply units
• digital controller design (Matsui et al. 2013)
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Approximate feasible parameter regions
 Validated numerical method to solve first-order formula φ
 approximately (but with guarantee) using interval arithmetic.
Repeated refinement of boxes and verification of T/F/U
T={T implies that φ is true for all elements of B}
F={F implies that φ is false for all elements of B}
U={undecided }

Reference:
• Approximate Quantified Constraint Solving by Cylindrical Box Decomposition 

(S. Ratschan, 2008)
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SyNRAC
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QE Benchmark problems 
GitHuB
 https://github.com/hiwane/qe_problems 
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