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 Abstract
 In this tutorial, we will give an overview of typical algorithms of quantifier 

elimination over the reals and illustrate their actual applications in 
industry. Some recent research results on computational efficiency 
improvement of quantifier elimination algorithms, in particular for solving 
practical industrial problems, will be also mentioned. Moreover, we will 
briefly explain valuable techniques and tips to effectively utilize quantifier 
elimination in practice.
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Quantifier Elimination (QE)



Real Quantifier Elimination

Quantifier elimination 
 algorithm to compute an equivalent quantifier-free formula for a given 

first-order formula over the reals

 Input : first-order formula in the elementary theory of real closed fields

 formula     : polynomial equations, inequalities, inequations over  R,
Boolean operations[∧,∨,¬,⇒, etc]

Output: an equivalent quantifier-free formula in free variables

 Feasible regions of free variables as semi-algebraic sets
 True or  False if all variables are quantified (Decision problem)

formula free-quantifier a is  and  where 
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Examples: Quantifier Elimination

Input
First-order formula

Output
An equivalent quantifier-free 

formula
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QE algorithms
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Typical QE algorithms

General QE algorithm
For arbitrary formulas 
 QE by  Cylindrical Algebraic Decomposition (CAD)

Special QE algorithm
For restricted classes of formulas
 QE by Virtual Substitution

• for linear/quadratic formulas (w.r.t. quantified variables)

 QE by the Sturm-Habicht sequence 
• for sign definite condition (SDC) :  
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QE algorithms - some more
 Cylindrical Algebraic Decomposition       Collins 1975
 Hong 1993
 Gonzalez-Vega 1989,

Yang et.al, 1996   
 Anai et.al, 1999
 Sign Definite Condition

 Low degree formula w.r.t quantified variables (degree limit : n=1,2,3)

 Virtual Substitution
 n = 1 :   Weispfenning et.al, 1988
 n = 2:    Loos et.al, 1993
 n = 3:    Weispfenning 1993

One block QE Hong et.al., 2012
 Allows measure-zero error
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Brief History of QE algorithms

1930  Tarski proved QE is possible over R
1951  Tarski proposed a QE algorithm over R

Computational complexity cannot be bound by any tower of 
exponentials

1975 Collins made a breakthrough
QE by Cylindrical Algebraic Decomposition (CAD)
Computational complexity down to doubly exponential w.r.t. the 

number of variables
1988 QE computation is proved to be heavy

Doubly exponential in worst case (Davenport and Heinz, 1988)
1990 QEPCAD: First CAD-based QE implementation (Hong)

 1980’s Different approaches
 QE algorithms for a restricted class of input

• QE for up to linear/quartic formulas, Positive polynomial condition
9



Typical QE tools
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CAD
RISC-Linz + etc.  

(G.Collins, H.Hong, C.Brown)

VS, CAD, 
Univ. Passau 

(T.Sturm, A.Dolzmann,V.Weispfenning)

CAD, VS, SDC
Fujitsu Laboratories Ltd. 

(H.Yanami, H.Iwane, H.Anai)

CAD, VS
Wolfram Research, Inc. 

(A.Strzebonski)

REDLOG



QE algorithm:
Cylindrical Algebraic Decomposition
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Cylindrical Algebraic Decomposition (CAD)
QE by CAD 
 First proposed by G.E.Collins 1975
QE by partial CAD (Collins & Hong 1991)

CAD
 Input :
Output :  

• partition of the r-dimensional real space, where all the input polynomials are sign-
invariant within each cell

 Implementation
QEPCAD,  Mathematica, SyNRAC

 Properties
Complexity: 
Output  formula  is in general simple 
No restriction on input formula  
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Cylindrical Algebraic Decomposition (CAD)
CAD
 Input :
Output :  

• partition of the r-dimensional real space, 
where all the input polynomials are sign-
invariant within each cell

CAD algorithm
 consists of 3 phases 

• projection phase
• base phase
• lifting phase
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Cylindrical Algebraic Decomposition (CAD)
 3 phases of CAD algorithm
 projection phase

• Many “projection operators” have been proposed
• Projection operators that produce small sets are good
 Example:

• Input 

• Output 

 base phase
• Real root isolation

• Often univariate poly over algebraic ext.

 Lifting phase 
• Algebraic extension
• validated numerics (SNCAD)
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Cylindrical Algebraic Decomposition
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

15

           

    

R2

 
2x

1x

: a sample point of each cell 









1
]5/4,4/3[

0.754... 

)2
3,(

23 xx

where




A sample point:  



Cylindrical Algebraic Decomposition
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2
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Cylindrical Algebraic Decomposition
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2
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CAD: Projection, Base phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Projection

18
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CAD: Base phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

Base
• Select a point between each set of neighboring real roots => sample points 
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CAD: Projection, Base phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

Base
• Select a point between each set of neighboring real roots => sample points 
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CAD: Lifting phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Lift the sample point (in R) to higher dimensions

• Substitute                         for                                                                      
• and we get  a set of polynomials in y :
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CAD: Lifting phase
 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Fin real roots : of polynomials in            
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CAD: Lifting phase
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 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Fin real roots : of polynomials in            
• Choose a point between each set of neighboring real roots



CAD: Lifting phase
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 Example
 Input :
Output :  an F2 - sign invariant CAD of R2

 Lifting
• Do  the same lifting process over all sample points 

• Fin real roots : of polynomials in            
• Choose a point between each set of neighboring real roots

Sample 
points



QE by CAD
 Procedure of QE by CAD
 Input: First-order formula : 

• CAD construction for 
• Collecting true cells in CAD in terms of the given first-order formula
• Solution formula construction : Disjunction of the formulas defining the true 

cells 

 Formula construction of a cell 
• Such formula is constructed from projection factors (CAD contains complete 

information about  their signs)

Note
• “Simple” formulas are desirable!

• Hong showed how to reduce simple formula construction to a combinatorial 
optimization problem

• CAD’s ability to provide simple solution formulas is unique compared with 
special QE algorithms.
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QE by CAD: formula construction 
 Formula construction of a cell
 First-order formula : 
CAD construction:

 Solution formula: 
26
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QE algorithm:
Virtual Substitution method

27



Virtual substitution (VS) 
QE by VS for low degree formulas (w.r.t quantified variables)
 Linear :  Weispfenning et al, 1988
Quadratic :    Loos et al, 1993
Cubic :    Weispfenning 1993

 Implementation
REDLOG
 SyNRAC

 Properties
Complexity: 
Output  formula  is in general large and redundant .
Degree violation (except linear case)
 Formula simplification is important. 
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Virtual substitution (VS) 
 Linear case
 Linear first-order formula

where every atomic formula in       is of the form 

 Problem 

1. Change the innermost quantifier into        :  

2. Remove the innermost quantifier 

3. Iterate until the quantifiers run out.
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Virtual substitution (VS) 
QE problem: 
 VS algorithm for a linear formula
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Virtual substitution (VS) 
QE problem: 
 VS algorithm for a linear formula

 Elimination set  S
 Set of atomic formulas in      :

 An elimination set for 

• Other elimination sets are known. 
• Using smaller elimination sets helps increase algorithm’s efficiency.
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QE algorithm:
Sturm-Habicht sequence method
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Sturm-Habicht sequence (SH) 
QE by Sturm-Habicht sequence for sign conditions of  an 

univariate polynomial  f (x) (with parametric coefficients)


• Gonzalez-Vega 1989, Yang et al. 1996 

 : sign definite condition (SDC)
• Anai & Hara 1999,  Iwane et al. 2013

 Implementation (SDC)
 SyNRAC

 Properties
Complexity: 
Output  formula  is in general large and redundant.
 Formula simplification is important. 
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Sturm-Habicht sequence (SH) 
QE problem
 Sign definite condition:

• SDC is equivalent to a condition that                                                                       
when the leading coefficient  of  f (x) is positive:

 A special QE algorithm using SH sequence for SDC
 Sturm-Habicht sequence of  f (x) :  SH( f )

• Counts the number of real roots of  f (x) in an interval (like the Sturm 
sequence) through  counting the number of sign changes of the sequence 
SH( f )  at the endpoints of the interval

 SDC

Combinatorial QE method
• Enumeration of sign changes of the sequence SH( f ) having the above 

property

34 Copyright 2010 FUJITSU LIMITED



Sturm-Habicht sequence
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Sturm-Habicht Sequence



36

Note This is different from that of Sturm sequence.



Real Root Counting by Sturm-Habicht Sequence
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Sturm-Habicht sequence Sturm sequence



Sturm-Habicht sequence (SH) 
 Sign definite condition:

when the leading coefficient  of  f (x) is positive:

Notations
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Algorithm & Implementation (Anai & Hara 1999)

Combinatorial QE algorithm for SDC

 Implementation
 Since steps 1 and 2 are independent of an input polynomial, we can 

execute these steps beforehand and store the results in a database. 
This greatly improves the total efficiency of the algorithm.
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Algorithm & Implementation (Anai & Hara 1999)

 Example
 SDC:

• for 

 Sturm-Habicht sequence of  f (x)

Remark: 

 Formula construction

40

s2 s1 s0 c2 c1 c0 # TF

+ + + + + + 0 T
+ + + + 0 + 2 F
+ + + + - + 2 F
+ + 0 + + 0 0 T
+ + 0 + 0 0 0 T
+ + 0 + - 0 1 F
+ + - + + - 0 T
+ + - + 0 - 0 T
+ + - + - - 0 T

Number of real roots 
in              



 Finds redundant sign conditions


 Simplifies by the rules

Combinatorial optimization.


s2 s1 s0 c2 c1 c0 # TF

+ + + + + + 0 T
+ + + + 0 + 2 F
+ + + + - + 2 F
+ + 0 + + 0 0 T
+ + 0 + 0 0 0 T
+ + 0 + - 0 1 F
+ + - + + - 0 T
+ + - + 0 - 0 T
+ + - + - - 0 T

For speeding up 

Necessary conditions for SDC

Simplification by using 
Boolean function manipulation

F
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Necessary Conditions for SDC (Iwane et al. 2013)
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s2 s1 s0 c2 c1 c0 #

+ + + + 0 + 2

+ + 0 + 0 0 0



Necessary Conditions for SDC (Iwane et al. 2013)
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•

Boolean Algebra / Boolean Function
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Boolean Function Manipulation
 There are a number of Boolean expressions to represent a 

Boolean function
 e.g., 
 Simplification of Boolean expressions.

• Finding a Boolean expression which has relatively a small number of product 
terms

 Boolean expressions have wide range of application
 Simplification of Boolean expressions directly corresponds to 

minimization of area of the designed circuit.

 ESPRESSO (Brayton et al., 1984)
 A heuristic method to simplify Boolean expressions.
 http://diamond.gem.valpo.edu/~dhart/ece110/espresso/tutorial.html
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Simplification based on Boolean Function Manipulation

 The sign of real number is three-valued, we need two Boolean 
variables to represent them.

 Introduction of don’t cares to simplify Boolean expression 
further.


 Sign conditions which do not satisfy the necessary conditions.
 Sign conditions which satisfy 

• The number of real roots is non-negative 

46



0100   1

ESPRESSO for quadratic poly. problem

INPUT FILE OUTPUT FILE

00 = 0
01 = -1
10 = +1

s0 c2 c1 T/F

+ + + T
+ + 0 DC
+ + - F
0 + + T
0 + 0 DC
0 + - F
- + + T
- + 0 T
- + - T

s0 c2 c1

< > *
* > ≧

1 = true
2 = don’t care
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Symbolic optimization by QE
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Symbolic optimization accomplished by QE

Advantages

 Exact (global) optimal  value even for nonconvex case 

 Parametric solving  e.g.,  parametric optimum,  feasible regions

Enabler for variants of parametric optimization 

 Parametric constraint solving:   feasible region

 (Multi-) parametric optimization:   optimal value function

Multi-objective optimization:      Pareto optimal front (trade-off line)
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Constraint solving by QE
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Constraint solving by QE
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True
Sample point:  (x,y)=(5,1)QE

∃x ∃y (4 x - w2 =0 ∧ x - x y -z+ 5 = 0
∧1 ≦ x ≦ 4 ∧ 1 ≦ y  ≦ 2)

[ w - 2 ≧ 0 ∨ w + 2 ≦ 0 ]
∧ w + 4 ≧ 0 ∧ w - 4 ≦ 0 ∧
z - 5 ≦ 0 ∧ 4 z + w^2 - 20 ≧ 0

QE
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Hurwitz stability
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Stability of a Control system

53



Stability Analysis of Linear Systems
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Resulting closed-loop system :

Stability condition (Hurwitz criterion) :

Unstable linear system :
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Q1 .   For  which  values  of  b > 0,  exists a value of  N ∈ ( 1,10 )
s.t. the closed-loop system is stable ?
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]0101[  bN  b

]010124[ 2  NNNN         

b∈(0.24,1.76)

N∈(4.45,10.0)

QE

QE

]0101[  bN  N b

QE true

b

N
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Stability Analysis of Linear Systems
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Q2 .   For  which  values  of  b > 0,  hold that for all  N ∈ ( 5,10 )
the closed-loop system is stable ?

QE

b∈ ( 0.66, 1.34 )

,1
3

5
1

3

5
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Stability Analysis of Linear Systems



Solving optimization problems by QE
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Optimization by using QE

Problem QE

QEExample

QE

QE
58



Parametric optimization
Given:
 an objective function to optimize
 a vector of constraints
 a vector of parameters

Obtain:
 the performance criterion (and the 

optimization variables) as a function 
of the parameters
 the regions in the space of parameters 

where these functions remain valid

)(z



Obtain optimal solution as a function of parameters
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Problem QE

Example

QE

QE

Parametric optimization by using QE
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Optimization by QE 
 Parametric optimization
 Example

QE problem
∃x ∃y 
(x1 - x1 x2 + 5 = z ∧ 4 x1 - θ2 =0
∧1 ≦ x1 ≦ 4 ∧ 1 ≦ x2 ≦ 2)

[θ - 2 ≧ 0 ∨ θ + 2 ≦ 0 ]
∧ θ + 4 ≧ 0 ∧ θ - 4 ≦ 0 ∧
z - 5 ≦ 0 ∧ 4 z + θ 2 - 20 ≧ 0

QE

21
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Multi-parametric optimization in control
 Applications
 Bi-level / Hierarchical programming
Optimization under uncertainty
Model predictive control
On-line control and optimization of 

• chemical, biomedical,  automotive systems

Parametric profile (opt)

Plant

Plant
state

Control
actions

MPO

Plant
state

Control
actions

off-line

Optimizer

Control unit

on-line

62



Multi-objective optimization by QE
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Multi-objective optimization (MOO)
 Problem

 Solution

x1

x2

f1

f2

Parameter space Objective space

f1

Pareto optimal front

x1
Pareto solution

f2x2

absolutely optimal 
solution
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Multi-objective optimization by QE
 Problem

QE problem

Copyright 2010 FUJITSU LIMITED65

f1

Pareto optimal front

x1
Pareto solution

f2x2



Problem QE

Example

QE

QE

Multi-objective optimization by QE
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Problem

minimize  y1 = f1(x)
y2 = f2(x)

…
subject to  C(x)

Solution

“Pareto set”

P = { all “minimal” y w.r.t ≤ }
y ≤ y’ iff ∀i yi ≤ yi’

Solution

y1

y2

Toy Example

minimize   y1 = 2 √x1

y2 = x1 – x1x2 + 5

subject to   1 ≦ x1 ≦ 4,
1 ≦ x2 ≦ 2

Example: Multi-objective optimization
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Existing numerical methods for MOO 
 Using single-objective optimization

 Weighted sum strategy
 Norm minimization
 E-constraint method

 Pareto analysis
 Normal boundary intersection

 Using metaheuristic algorithms
 Evolutionary algorithms
 Particle swarm optimization

Objective function 1
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Solution

y1

y2

Solution

y1

y2

Optimization Problem

minimize   y1 = 2 √x1

y2 = x1 – x1x2 + 5

subject to   1 ≦ x1 ≦ 4,
1 ≦ x2 ≦ 2

QE Problem

∃x1∃x2 (y1 = 2 √x1 ∧
y2 = x1 – x1x2 + 5 ∧

1 ≦ x1 ≦ 4 ∧
1 ≦ x2 ≦ 2)

Comparison: Symbolic vs. Numeric
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 SRAM shape optimization
Objective functions:

• min ( - Yield rate(Y), Voltage(V), Size(S) )

HDD (head) shape design
Objective functions:

• Stability of Flight-height, attitude(Roll, Pitch, Yaw)

Applications : MOO by QE

Y

S V

S

V 99.999839
99.999997

99.993559

Y
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Multi-objective optimization by QE

Optimal shape design of Air Bearing 
Surface of HDD

71



Shape design of Air Bearing Surface of HDD

72

 ABS (Air Bearing Surface)

 The disc is rapidly spinning and the ABS surfacing over the disc due to 
air current.

 Problem:  Find the optimal shape of ABS s.t.
 flight height of the ABS from the rapidly spinning disc is close to a target 

value
 attitude (Roll, Pitch, Yaw) of the ABS is stable
…



Design problem:  Find the optimal shape of ABS s.t.
 1) flight height of the ABS from the rapidly spinning disc  is close to a target value
 2) attitude (Roll, Pitch, Yaw) of the ABS is stable
…

 Simulation

Optimization problem                 (Yanami et al., 2009)

Response surface methodology 
• Modeling of  the objective functions                         from a certain number of 

simulation results.
Multi-objective optimization

Shape design of Air Bearing Surface of HDD

73
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1x Surfacing 
simulation

(fluid dynamics)

h :  flight height,
A:  (roll, pitch, yaw,)
…

Input Output Objective functions
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Our real problem
 Shape parameters :
Objective functions:

Response surface construction
 Data set of                                       for  553 different shapes 
 Polynomial  model of                    :

• Linear regression  (R2 > 0.95)
Multi-objective optimization 

MOO by QE
 Feasible region of

• Pareto front
• Solution by a numerical  method

Shape design of Air Bearing Surface of HDD
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f1= x1*1.56834776 +x2*0.804244896 +x3*21.32342295 +x4*(-7.71943013) 
+x5*(-4.262328228) +x6*12.95499327 +x7*0.29533099 +x8*(-1.142721635) 
+(-7.809437853);

f2:= x1*0.37323681 + x2*1.313718858 + x3*7.296804764 + x4*(-
3.214736241) + x5*10.32056396 + x6*6.068769576 + x7*(-2.987556175) + 
x8*6.86732377 + (-4.344757609)

f1
××

×
×

×

f2

f1

f2×



Parametric optimization by QE

Optimal shape design of SRAM
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shape design of an SRAM cell

76

 Static random-access memory (SRAM) cell

 Problem: Find the optimal shape of an SRAM cell with 
 Smaller cell size (area)

 Lower fail rate   



Multi-optimization problems 

MOO by QE
QE problem                                               an equivalent quantifier-free formula

shape design of an SRAM cell
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s.t.

 VS algorithm: REDUCE 07-oct-10 / REDLOG 1.60 GHz CPU / 8.0 GB memory

more than
1 hour….



QE problem

 Symbolic-Numeric optimization   (Iwane et al., 2011)
• We utilize                       as a search area in a numerical optimization approach

• better approximation of an optimal values than ordinal numeric approaches
• more effective than symbolic approach

shape design of an SRAM cell

78

QE

more than
1 hour….

QE

VS
(linear, quadratic)

VS
(linear)

1 sec



MOO results comparison

modeFrontier 4.2.1  / Particle Swarm Optimization (PSO) / 2000 samples
1.60 GHz CPU / 8.0 GB memory

Symbolic-Numeric Numeric
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QE problem

 Symbolic-Numeric optimization   (Iwane et al., 2011)
• We utilize                       as a search area in a numerical optimization approach

• better approximation of an optimal values than ordinal numeric approaches
• more effective than symbolic approach

shape design of an SRAM cell

80

QE

more than
1 hour….

QE

VS
(linear, quadratic)

VS
(linear)

1 sec



INTERPLAY:
Quantifier elimination algorithms and 
applications in Control
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Brief History of QE algorithms

1930  Tarski proved QE is possible over R
1951  Tarski proposed a QE algorithm over R

Computational complexity cannot be bound by any tower of 
exponentials

1975 Collins made a breakthrough
QE by Cylindrical Algebraic Decomposition (CAD)
Computational complexity down to doubly exponential w.r.t. the 

number of variables
1988 QE computation is proved to be heavy

Doubly exponential in worst case (Davenport and Heinz, 1988)
1990 QEPCAD: First CAD-based QE implementation (Hong)

82

 1980’s Different approaches
 QE algorithms for a restricted class of input

• QE for up to linear/quartic formulas, Positive polynomial condition

Note !
Such special classes 

have close relations with
Industrial applications !



QE and control applications
 Purely symbolic and algebraic approaches have several 

“practical size” applications in control. 

 Special algorithms by exploiting the structure of the problems
have been successfully applied.

 Still we need to solve larger size problems in a reasonable 
amount of time.

We employ validated numerical methods  (interval arithmetic)
 Symbolic-Numeric CAD computation (still exact)

• Speeding up QE algorithm based on CAD
 Approximated quantified constraint solving

• Obtaining approximated feasible regions (with guarantee) 

83



General QE: QE by CAD
 For speeding-up QE by CAD 
QE by a partial CAD (Hong, Collins)
 “Projection Operator” 

• Collins’ projection operator (the original)
• Hong’s projection operator (improved Collins’)
• McCallum’s projection operator
• Brown-McCallum projection operator (improved McCallum’s)
• “special purpose” projection operators: 

• Collins-McCallum:  equational constraints, Seidl-Sturm:  generic CAD, 
• Strzebo´nski : solving strict systems, Anai, Parrilo: solving SDP 

 Lifting 
• Full-dimensional cell
• Lifting with symbolic-numeric computations  (SN-CAD)
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General QE: QE by CAD
QE by CAD 
 Early period on QE applications (stability analysis in control)  …

 Still many QE problems requires general QE algorithms by CAD.
• Use CAD properties for a given problems

• Optimization problems:
 Semi-definite programming (Anai & Parrilo 2003)
 Polynomial optimization problems (Iwane et.al. 2013)
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P.Dorato & I.Sakamaki IFAC Rocon’03, 2003
While commercial software is now available for the application of symbolic

QE for the design of robust feedback systems, only problems of limited complexity 
can be solved. Of course, super-computer systems can extend the level of complexity,
But the level is likely to saturate on problems where the order of combined plant 
and compensator is greater than 5 or 6.

P.Dorato et.al. UNM Technical Report : EECE95-007, 1995
Our Experience indicates that QEPCAD can always solve, in a few

seconds on a large workstation, most textbook examples. It can also 
solve some significantly harder problems and  a few nontrivial problems.

Particular subclasses  : Special QE  algorithms !



Special QE algorithms
 Specialized QE  (for restricted inputs) 
Reducing the industrial problems into “nice / simple” formulas by 

exploring their structures.
 Solving the formulas by specialized QE algorithms 

 Examples
 Sturm-Habicht sequence

• Sign behavior of univariate polynomial
• Sign definite condition (SDC):

 Virtual substitution
• for Low-degree inputs (linear, quadratic)
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Control system design problem



Relevance of Special QE algorithm
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Robust control 
Design problems SDC

Control problems First-order formulas

General QE 

Special QE 



Parametric robust control design
 Problem
Multi-objective low-order fixed-structure controller synthesis

• Frequently required problems in industry 
• Specifications in frequency domain properties

 Our approach
 A parameter space approach by symbolic computation (QE)
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Parametric
optimization

Superpose
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Feasible regions
of  PI controller Spec (b) 
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Robust control design by a general QE
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Robust control design by a special QE
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Anai & Hara (1999)Anai & Hara (1999)

Special QE
(Sturm-Habicht seq.)



H∞-norm constraint

Frequency restricted H∞-norm constraint

⇔

⇔
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bilinear transformation

SDC reduction
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Example： mixed sensitivity problem
Mixed sensitivity problem
 Specifications:  Frequency restricted H∞ norm constraints

(b)
(c)

response Robust stability
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 Stability with Mixed sensitivity

(a) Hurwitz Stability

(b) Sensitivity

(c) Complementary sensitivity
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Parametric robust control design
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(b) ⇒

(c) ⇒

 Stability with Mixed sensitivity

(a) Hurwitz Stability

(b) Sensitivity

(c) Complementary sensitivity
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Parametric robust control design
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 Stability with Mixed sensitivity

(a) Hurwitz Stability

(b) Sensitivity

(c) Complementary sensitivity
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Robust control design
Our approach

 Tractability
 PI/PID for a plant with order 10 : < 1h 

Multivariate
Polynomial
Inequalities
(parametric)

Symbolic 
optimization

(QE)

Feasible regions

specification

P(s)C(s)r e u y
- +

Anai & Hara (ACC2000,IFAC02)

reduction

(a) Hurwitz Stability
(b) H∞-norm constraint 
(c) Gain/Phase margin
(d) Pole assignment
(e) Stability radius

Sign Definite ConditionFrequency domain properties Specialized  QE for SDC
(Sturm-Habicht sequence)
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Parametric Robust Control Toolbox
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Parametric robust control design
 Parametric robust control design by QE has been successfully 

applied to nontrivial industrial problems.
 Electric generating facility

• generator excitation control design (Yoshimura et al. 2008)

 Power supply units
• digital controller design (Matsui et al. 2013)
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Approximate feasible parameter regions
 Validated numerical method to solve first-order formula φ
 approximately (but with guarantee) using interval arithmetic.
Repeated refinement of boxes and verification of T/F/U
T={T implies that φ is true for all elements of B}
F={F implies that φ is false for all elements of B}
U={undecided }

Reference:
• Approximate Quantified Constraint Solving by Cylindrical Box Decomposition 

(S. Ratschan, 2008)
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SyNRAC
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QE Benchmark problems 
GitHuB
 https://github.com/hiwane/qe_problems 
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